print.OptimalSpatialDesign {SpatFD} | R Documentation |
Print of OptimalSpatialDesign objects
Description
This functions prints a summary of the main objects of OptimalSpatialDesign objects.
Usage
## S3 method for class 'OptimalSpatialDesign'
print(x, ...)
Arguments
x |
Object of class 'OptimalSpatialDesign'. |
... |
arguments from print |
Value
Shows the amount of fixed stations, new stations and the first six new coordinates.
Author(s)
Samuel Sánchez Gutiérrez ssanchezgu@unal.edu.co.
References
Bohorquez, M., Giraldo, R., & Mateu, J. (2016). Optimal sampling for spatial prediction of functional data. Statistical Methods & Applications, 25(1), 39-54.
See Also
Examples
library(gstat)
data(AirQualityBogota)
vgm_model <- gstat::vgm(psill = 5.665312,
model = "Exc",
range = 8000,
kappa = 1.62,
add.to = vgm(psill = 0.893,
model = "Nug",
range = 0,
kappa = 0))
my.CRS <- sp::CRS("EPSG:21899") # https://epsg.io/21899
map <- as(map, "Spatial")
bogota_shp <- sp::spTransform(map,my.CRS)
target <- sp::spsample(bogota_shp,n = 100, type = "random")
# The set of points in which we want to predict optimally.
old_stations <- sp::spsample(bogota_shp,n = 3, type = "random")
# The set of stations that are already fixed.
FD_optimal_design(k = 10, s0 = target,model = vgm_model,
map = map,plt = TRUE,#method = "scores",
fixed_stations = old_stations) -> res
print(res)
[Package SpatFD version 0.0.1 Index]