classification {SpatFD} | R Documentation |
Classification Function for Functional Data
Description
This function classifies new functional data based on PCA results from training data.
Usage
classification(data.train.pca, new.basis, k, distance, mcov = NULL)
Arguments
data.train.pca |
A list of PCA results from training data. |
new.basis |
Basis object from the test data |
k |
Number of nearest neighbors to consider for classification. |
distance |
Type of distance to use (e.g., "euclidean", "mahalanobis"). |
mcov |
Optional covariance matrices for Mahalanobis distance. |
Value
The predicted class for the new data.
Examples
data(vowels)
#### Create parameters and names for the data.
p = 228 ; nelec = 21 ; nvow = 5
names_vowels = c("a","e","i","o","u")
n.basis<-c(14,13,12,13,11)
s4.gfdata = gfdata(data=vowels,p=p,names=names_vowels,coords=vowels_coords,nbasis=n.basis)
# Create train and test data
s4.sep=gfd_clasif_data(s4.gfdata, 0.8,seed = 2910)
s4.train=s4.sep$train
s4.test=s4.sep$test
# Classification
cla<-classification(data.train.pca = s4.train,
new.basis=s4.test[[1]]$data_fd[[1]],
k=4,
distance='euclidean',
mcov = mcov
)
[Package SpatFD version 0.0.1 Index]