COK_crossval_loo {SpatFD} | R Documentation |
Leave-One-Out Cross-Validation for Functional cokriging
Description
This function performs leave-one-out cross-validation for functional cokriging. It systematically leaves out one location at a time from the dataset, fits the model to the remaining data, and then makes a prediction for the left-out observation. It is used to assess the predictive performance of the functional cokriging model.
Usage
COK_crossval_loo(object, plot_show, var, show_all)
Arguments
object |
A 'COKS_pred' object obtained with function |
plot_show |
A logical value. If |
var |
A numerical value indicating the number of the variable to be used in the cross-validation. Default is |
show_all |
A logical value. If |
Value
An object containing the results of the leave-one-out cross-validation. Includes:
performance_metrics |
Summary statistics describing the overall predictive performance, such as mean squared error. |
plots |
The generation of plots showing the cross-validation results, controlled by the |
Author(s)
Venus Puertas vpuertasg@unal.edu.co
References
Bohorquez, M., Giraldo, R., & Mateu, J. (2016). Optimal sampling for spatial prediction of functional data. Statistical Methods & Applications, 25(1), 39-54.
Bohorquez, M., Giraldo, R., & Mateu, J. (2016). Multivariate functional random fields: prediction and optimal sampling. Stochastic Environmental Research and Risk Assessment, 31, pages53–70 (2017).
See Also
Examples
# Load the data and the required packages
library(SpatFD)
library(gstat)
data(COKMexico)
# Create the SpatFD data objects
SFD_PM10_NO2 <- SpatFD(Mex_PM10, coords = coord_PM10, basis = "Fourier",
nbasis = 21, lambda = 0.000001, nharm = 2,
name = names(Mex_PM10))
SFD_PM10_NO2 <- SpatFD(NO2, coords = coord_NO2, basis = "Fourier",
nbasis = 27, lambda = 0.000001, nharm = 2,
add = SFD_PM10_NO2,name = names(NO2))
# Fit the model
model1 <- gstat::vgm(647677.1,"Gau",23317.05)
model1 <- gstat::vgm(127633,"Wav",9408.63, add.to = model1)
# Perform the cokriging
newcoords <- data.frame(x = 509926,y = 2179149)
coks <- COKS_scores_lambdas(SFD_PM10_NO2,newcoords,model1)
# Perform the cross-validation along NO2
COK_crossval_loo(object = coks, var = 2,show_all=TRUE)