COKS_scores_lambdas {SpatFD} | R Documentation |
Functional cokriging
Description
Linear Spatial functional prediction. Two predictors are possible: scores or lambda.
Usage
COKS_scores_lambdas(SFD, newcoords, model, method = "scores", fill.all=TRUE)
Arguments
SFD |
object of class 'SpatFD'. |
newcoords |
The N × 2 matrix or data.frame with the spatial coordinates corresponding to the N prediction locations. |
model |
The linear model of coregionalization of all functional variable scores. A variogram model. A variogramModel object. See gstat package. |
method |
Prediction method: "scores" |
fill.all |
gstat function parameter. If there are more than 1 score vector and not all models or a valid and complete linear model of coregionalization is given, fill all of the direct and cross variogram model with the only model given. |
Details
Each functional variable is represented in terms of its functional principal components
where
The goal is the prediction of a spatial functional variable of at the unsampled site
based on P spatial functional variables. The method performs cokriging directly on the scores chosen for all functional variables involved.
Scores predictions are used to build the cokriging functional predictor.
Value
Returns a 'COKS_pred' object with functional cokriging
Author(s)
Valeria Bejarano <vbejaranos@unal.edu.co>
References
Bohorquez, M., Giraldo, R., & Mateu, J. (2016). Multivariate functional random fields: prediction and optimal sampling. Stochastic Environmental Research and Risk Assessment, 31, pages53–70 (2017).
Bohorquez M.; Giraldo R. and Mateu J. Spatial prediction and optimal sampling of functional data in Geostatistical Functional Data Analysis: Theory and Methods (2021). John Wiley Sons, Chichester, UK. ISBN: 978-1-119-38784-8. https://www.wiley.com/en-us/Geostatistical+Functional+Data+Analysis-p-9781119387848.
See Also
Examples
data(COKMexico)
SFD_PM10_NO2 <- SpatFD(Mex_PM10, coords = coord_PM10, basis = "Fourier",
nbasis = 21, lambda = 0.000001, nharm = 2)
SFD_PM10_NO2 <- SpatFD(NO2, coords = coord_NO2, basis = "Fourier",
nbasis = 27, lambda = 0.000001, nharm = 2,
add = SFD_PM10_NO2)
model1 <- gstat::vgm(647677.1,"Gau",23317.05)
model1 <- gstat::vgm(127633,"Wav",9408.63, add.to = model1)
newcoords <- data.frame(x = 509926,y = 2179149)
COKS_scores_lambdas(SFD_PM10_NO2,newcoords,model1)