sim.data {SparseTSCGM} | R Documentation |
Multivariate time series simulation with chain graphical models
Description
Generates sparse vector autoregressive coefficients matrices and precision matrix from various network structures and using these matrices generates repeated multivariate time series dataset.
Usage
sim.data(model=c("ar1","ar2"),time=time,n.obs=n.obs, n.var=n.var,seed=NULL,
prob0=NULL, network=c("random","scale-free","hub","user_defined"),
prec=NULL,gamma1=NULL,gamma2=NULL)
Arguments
model |
Specifies the order of vector autoregressive models. Vector autoregressive
model of order 1 is applied if |
time |
Number of time points. |
n.obs |
Number of observations or replicates. |
n.var |
Number of variables. |
seed |
Random number seed. |
prob0 |
Initial sparsity level. |
network |
Specifies the type of network structure. This could be random, scale-free, hub
or user defined structures. Details on simultions from the various network
structures can be found in the R package |
prec |
Precision matrix. |
gamma1 |
Autoregressive coefficients matrix at time lag 1. |
gamma2 |
Autoregressive coefficients matrix at time lag 2. |
Value
A list containing:
theta |
Sparse precision matrix. |
gamma |
Sparse autoregressive coefficients matrix. |
sigma |
Covariance matrix. |
data1 |
Repeated multivariate time series data in longitudinal format. |
Author(s)
Fentaw Abegaz and Ernst Wit
Examples
seed = 321
datas <- sim.data(model="ar1", time=4,n.obs=3, n.var=5,seed=seed,prob0=0.35,
network="random")
data.ts <- datas$data1
prec_true <- datas$theta
autoR_true <- datas$gamma