lambda1_calculator {SparseMDC} | R Documentation |
Lambda 1 Calcualtor
Description
Calculates the lambda 1 value for the SparseMDC algorithm. The lambda 1 value controls the number of marker genes selected for each cluster in the output from SparseMDC. It is calculated as the value of lambda 1 that results in no marker genes being selected when then are no meaningful clusters present in the data. Please see the original manuscript for further details.
Usage
lambda1_calculator(dat_l, dim, nclust, nboot = 1000, alpha1 = 0.5,
delta = 1e-07)
Arguments
dat_l |
list with D entries, each entry contains data d, p * n matrix. This data should be centered and log-transformed. |
dim |
Total number of conditions, D. |
nclust |
Total number of clusters. |
nboot |
The number of bootstrap repetitions used for estimating lambda 1, the default value is 1000. |
alpha1 |
The quantile of the bootstrapped lambda 1 values to use, range is (0,1). The default value is 0.5, the median of the calculated lambda 1 values. |
delta |
Small value term added to ensure existance, default value is 0.0000001. |
Value
The estimated value of lambda1 for use in main SparseMDC algorithm
Examples
set.seed(10)
# Select small dataset for example
data_test <- data_biase[1:100,]
# Split data into condition A and B
data_A <- data_test[ , which(condition_biase == "A")]
data_B <- data_test[ , which(condition_biase == "B")]
data_C <- data_test[ , which(condition_biase == "C")]
# Store data as list
dat_l <- list(data_A, data_B, data_C)
# Pre-process the data
pdat <- pre_proc_data(dat_l, dim=3, norm = FALSE, log = TRUE,
center = TRUE)
lambda1 <- lambda1_calculator(pdat, dim = 3, nclust = 3 )