SparseM.solve {SparseM} | R Documentation |
Linear Equation Solving via Cholesky Decomposition for Sparse Matrices
Description
chol()
performs a Cholesky decomposition of a symmetric positive definite sparse matrix
x
of classmatrix.csr
.backsolve()
performs a triangular back-fitting to compute the solutions of a system of linear equations in one step.
backsolve()
andforwardsolve()
can also split the functionality of
backsolve
into two steps.solve()
combines
chol()
andbacksolve()
to compute the inverse of a matrix if the right-hand-side is missing.
Usage
chol(x, ...)
## S4 method for signature 'matrix.csr'
chol(x, pivot = FALSE,
nsubmax, nnzlmax, tmpmax,
eps = .Machine$double.eps, tiny = 1e-30, Large = 1e128, warnOnly = FALSE,
cacheKb = 1024L, level = 8L, ...)
## S4 method for signature 'matrix.csr.chol'
backsolve(r, x, k, upper.tri, transpose,
twice = TRUE, drop = TRUE, ...)
## S4 method for signature 'matrix.csr.chol'
forwardsolve(l, x, k, upper.tri, transpose)
## S4 method for signature 'matrix.csr'
solve(a, b, ...)
Arguments
a |
symmetric positive definite matrix of class |
r , l |
object of class |
x |
|
b |
vector or matrix right-hand-side(s) to solve for. |
k |
inherited from the generic; not used here. |
pivot |
inherited from the generic; not used here. |
nsubmax , nnzlmax , tmpmax |
positive integer numbers with smart defaults; do not set unless you know what you are doing! |
eps |
positive tolerance for checking symmetry; change with caution. |
tiny |
positive tolerance for checking diagonal entries to be
“essentially zero” and hence to be replaced by |
Large |
large positive number, “essentially infinite”, to replace tiny diagonal entries during Cholesky. |
warnOnly |
|
cacheKb |
a positive integer, specifying an approximate size of the machine's cache memory in kilo (1024) bytes (‘Kb’); used to be hard wired to 64. |
level |
level of loop unrolling while performing numerical
factorization; an integer in |
upper.tri , transpose |
inherited from the generic; not used here. |
twice |
|
drop |
|
... |
further arguments passed to or from other methods. |
Details
chol
performs a Cholesky decomposition of
a symmetric positive definite sparse matrix a
of class
matrix.csr
using the block sparse Cholesky algorithm of Ng and
Peyton (1993). The structure of the resulting matrix.csr.chol
object is relatively complicated. If necessary it can be coerced back
to a matrix.csr
object as usual with as.matrix.csr
.
backsolve
does triangular back-fitting to compute
the solutions of a system of linear equations. For systems of linear equations
that only vary on the right-hand-side, the result from chol
can be reused. Contrary to the behavior of backsolve
in base R,
the default behavior of backsolve(C,b)
when C is a matrix.csr.chol
object
is to produce a solution to the system Ax = b
where C <- chol(A)
, see
the example section. When the flag twice
is FALSE
then backsolve
solves the system Cx = b
, up to a permutation – see the comments below.
The command solve
combines chol
and backsolve
, and will
compute the inverse of a matrix if the right-hand-side is missing.
The determinant of the Cholesky factor is returned providing a
means to efficiently compute the determinant of sparse positive
definite symmetric matrices.
There are several integer storage parameters that are set by default in the call
to the Cholesky factorization, these can be overridden in any of the above
functions and will be passed by the usual "dots" mechanism. The necessity
to do this is usually apparent from error messages like: Error
in local(X...) increase tmpmax. For example, one can use,
solve(A,b, tmpmax = 100*nrow(A))
. The current default for tmpmax
is 50*nrow(A)
. Some experimentation may be needed to
select appropriate values, since they are highly problem dependent. See
the code of chol() for further details on the current defaults.
Note
There is no explicit checking for positive definiteness of the matrix
so users are advised to ensure that this condition is satisfied.
Messages such as "insufficient space" may indicate that one is trying
to factor a singular matrix.
Because the sparse Cholesky algorithm re-orders the positive
definite sparse matrix A
, the value of
x <- backsolve(C, b)
does not equal the solution to the
triangular system Cx = b
, but is instead the solution to the
system CPx = Pb
for some permutation matrix P
(and analogously for x <- forwardsolve(C, b)
). However, a
little algebra easily shows that
backsolve(C, forwardsolve(C, b), twice = FALSE)
is the solution
to the equation Ax=b
. Finally, if C <- chol(A)
for some
sparse covariance matrix A
, and z is a conformable standard normal vector,
then the product y <- as.matrix.csr(C) %*% z
is normal with covariance
matrix A
irrespective of the permutation of the Cholesky factor.
References
Koenker, R and Ng, P. (2002) SparseM: A Sparse Matrix Package for R. http://www.econ.uiuc.edu/~roger/research/home.html
Ng, E. G. and B. W. Peyton (1993) Block sparse Cholesky algorithms on advanced uniprocessor computers. SIAM J. Scientific Computing 14, 1034–1056.
See Also
slm()
for a sparse version of stats package's lm()
.
Examples
data(lsq)
class(lsq) # -> [1] "matrix.csc.hb"
model.matrix(lsq)->design.o
class(design.o) # -> "matrix.csr"
dim(design.o) # -> [1] 1850 712
y <- model.response(lsq) # extract the rhs
length(y) # [1] 1850
X <- as.matrix(design.o)
c(object.size(X) / object.size(design.o)) ## X is 92.7 times larger
t(design.o) %*% design.o -> XpX
t(design.o) %*% y -> Xpy
chol(XpX) -> chol.o
determinant(chol.o)
b1 <- backsolve(chol.o,Xpy) # least squares solutions in two steps
b2 <- solve(XpX,Xpy) # least squares estimates in one step
b3 <- backsolve(chol.o, forwardsolve(chol.o, Xpy),
twice = FALSE) # in three steps
## checking that these three are indeed equal :
stopifnot(all.equal(b1, b2), all.equal(b2, b3))