ElasticNet_HJBiplot {SparseBiplots} | R Documentation |
Elastic Net HJ Biplot
Description
This function is a generalization of the Ridge regularization method and the LASSO penalty. Realizes the representation of the SPARSE HJ Biplot through a combination of LASSO and Ridge, on the data matrix. This means that with this function you can eliminate weak variables completely as with the LASSO regularization or contract them to zero as in Ridge.
Usage
ElasticNet_HJBiplot(X, Lambda = 1e-04, Alpha = 1e-04, Transform.Data = 'scale')
Arguments
X |
array_like; |
Lambda |
float; |
Alpha |
float; |
Transform.Data |
character; |
Details
Algorithm used to perform automatic selection of variables and continuous contraction simultaneously. With this method, the model obtained is simpler and more interpretable. It is a particularly useful method when the number of variables is much greater than the number of observations.
Value
ElasticNet_HJBiplot
returns a list containing the following components:
loadings |
array_like; |
n_ceros |
array_like; |
coord_ind |
array_like; |
coord_var |
array_like; |
eigenvalues |
array_like; |
explvar |
array_like; |
Author(s)
Mitzi Cubilla-Montilla, Carlos Torres-Cubilla, Ana Belen Nieto Librero and Purificacion Galindo Villardon
References
Galindo, M. P. (1986). Una alternativa de representacion simultanea: HJ-Biplot. Questiio, 10(1), 13-23.
Erichson, N. B., Zheng, P., Manohar, K., Brunton, S. L., Kutz, J. N., & Aravkin, A. Y. (2018). Sparse principal component analysis via variable projection. arXiv preprint arXiv:1804.00341.
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the royal statistical society: series B (statistical methodology), 67(2), 301-320.
See Also
Examples
ElasticNet_HJBiplot(mtcars, Lambda = 0.2, Alpha = 0.1)