SpaCOAP {SpaCOAP} | R Documentation |
Fit the SpaCOAP model
Description
Fit the spatial covariate-augmented overdispersed Poisson factor model
Usage
SpaCOAP(
X_count,
Adj_sp,
H,
Z = matrix(1, nrow(X_count), 1),
offset = rep(0, nrow(X_count)),
rank_use = 5,
q = 15,
epsELBO = 1e-08,
maxIter = 30,
verbose = TRUE,
add_IC_inter = FALSE,
seed = 1,
algo = 1
)
Arguments
X_count |
a count matrix, the observed count matrix with shape n-by-p. |
Adj_sp |
a sparse matrix, the weighted adjacency matrix; |
H |
a n-by-d matrix, the covariate matrix with low-rank regression coefficient matrix; |
Z |
an optional matrix, the fixed-dimensional covariate matrix with control variables; default as a full-one column vector if there is no additional covariates. |
offset |
an optional vector, the offset for each unit; default as full-zero vector. |
rank_use |
an optional integer, specify the rank of the regression coefficient matrix; default as 5. |
q |
an optional string, specify the number of factors; default as 15. |
epsELBO |
an optional positive vlaue, tolerance of relative variation rate of the envidence lower bound value, defualt as '1e-8'. |
maxIter |
the maximum iteration of the VEM algorithm. The default is 30. |
verbose |
a logical value, whether output the information in iteration. |
add_IC_inter |
a logical value, add the identifiability condition in iterative algorithm or add it after algorithm converges; default as FALSE. |
seed |
an integer, set the random seed in initialization, default as 1; |
algo |
an optional integer taking value 1 0r 2, select the algorithm used, default as 1, representing variational EM algorithm. |
Details
None
Value
return a list including the following components:
-
F
- the predicted factor matrix; -
B
- the estimated loading matrix; -
bbeta
- the estimated low-rank large coefficient matrix; -
alpha0
- the estimated regression coefficient matrix corresponing to Z; -
invLambda
- the inverse of the estimated variances of error; -
eta
- the estimated spatial autocorrelation parameter; -
S
- the approximated posterior covariance for each row of F; -
ELBO
- the ELBO value when algorithm stops; -
ELBO_seq
- the sequence of ELBO values. -
time_use
- the running time in model fitting of SpaCOAP;
References
Liu W, Zhong Q. High-dimensional covariate-augmented overdispersed poisson factor model. Biometrics. 2024 Jun;80(2):ujae031.
See Also
None
Examples
width <- 20; height <- 15; p <- 100
d <- 20; k <- 3; q <- 6; r <- 3
datlist <- gendata_spacoap(width=width, height=height, p=p, d=20, k=k, q=q, rank0=r)
fitlist <- SpaCOAP(X_count=datlist$X, Adj_sp = datlist$Adj_sp,
H= datlist$H, Z = datlist$Z, q=6, rank_use=3)
str(fitlist)