predict.idm {SmoothHazard} | R Documentation |
Predictions for an illness-death model using either a penalized likelihood approach or a Weibull parametrization.
Description
Predict transition probabilities and cumulative probabilities from an object
of class idmSplines
with confidence intervals are calculated.
Usage
## S3 method for class 'idm'
predict(
object,
s,
t,
newdata,
nsim = 200,
seed = 21,
conf.int = 0.95,
lifeExpect = FALSE,
maxtime,
...
)
Arguments
object |
an |
s |
time point at which prediction is made. |
t |
time horizon for prediction. |
newdata |
A data frame with covariate values for prediction. |
nsim |
number of simulations for the confidence intervals calculations. The default is 200. |
seed |
Seed passed to |
conf.int |
Level of confidence, i.e., a value between 0 and 1,
the default is |
lifeExpect |
Logical. If |
maxtime |
The upper limit of integration for calculations of life expectancies from Weibull parametrizations. |
... |
other parameters. |
Value
a list containing the following predictions with pointwise confidence intervals:
p00 |
the transition probability
|
p01 |
the transition probability
|
p11 |
the transition probability
|
p12 |
the transition probability
|
p02_0 |
the probability of direct transition from state 0 to state 2. |
p02_1 |
the probability of transition from state 0 to state 2 via state 1. |
p02 |
transition probability |
F01 |
the lifetime
risk of disease. |
F0. |
the probability of exit from state
0. |
Author(s)
R: Celia Touraine <Celia.Touraine@isped.u-bordeaux2.fr> and Thomas Alexander Gerds <tag@biostat.ku.dk> Fortran: Pierre Joly <Pierre.Joly@isped.u-bordeaux2.fr>
See Also
Examples
set.seed(100)
d=simulateIDM(n = 200)
fit <- idm(formula01=Hist(time=list(L,R),event=seen.ill)~X1+X2+X3,
formula02=Hist(time=observed.lifetime,event=seen.exit)~X1+X2+X3,
data=d,conf.int=FALSE)
predict(fit,s=0,t=80,conf.int=FALSE,lifeExpect=FALSE)
predict(fit,s=0,t=80,nsim=4,conf.int=TRUE,lifeExpect=FALSE)
predict(fit,s=0,t=80,nsim=4,conf.int=FALSE,lifeExpect=TRUE)
data(Paq1000)
library(prodlim)
fit.paq <- idm(formula02=Hist(time=t,event=death,entry=e)~certif,
formula01=Hist(time=list(l,r),event=dementia)~certif,data=Paq1000)
predict(fit.paq,s=70,t=80,newdata=data.frame(certif=1))
predict(fit.paq,s=70,lifeExpect=TRUE,newdata=data.frame(certif=1))
fit.splines <- idm(formula02=Hist(time=t,event=death,entry=e)~certif,
formula01=Hist(time=list(l,r),event=dementia)~certif,
formula12=~1,
method="Splines",
data=Paq1000)
predict(fit.splines,s=70,t=80,newdata=data.frame(certif=1))
predict(fit.splines,s=70,t=80,lifeExpect=TRUE,newdata=data.frame(certif=1),nsim=20)