dataPreprocess {SmCCNet} | R Documentation |
preprocess a omics dataset before running omics SmCCNet
Description
Data preprocess pipeline to: (1) filter by coefficient of variation (cv), (2) center or scale data and (3) adjust for clinical covariates.
Usage
dataPreprocess(
X,
covariates = NULL,
is_cv = FALSE,
cv_quantile = 0,
center = TRUE,
scale = TRUE
)
Arguments
X |
dataframe with the size of |
covariates |
dataframe with covariates to be adjusted for. |
is_cv |
Whether to use coefficient of variation filter (small cv filter out). |
cv_quantile |
CV filtering quantile. |
center |
Whether to center the dataset X. |
scale |
Whether to scale the dataset X. |
Value
Processed omics data with the size of nxp.
Examples
X1 <- as.data.frame(matrix(rnorm(600, 0, 1), nrow = 60))
covar <- as.data.frame(matrix(rnorm(120, 0, 1), nrow = 60))
processed_data <- dataPreprocess(X = X1, covariates = covar, is_cv = TRUE,
cv_quantile = 0.5, center = TRUE, scale = TRUE)
[Package SmCCNet version 2.0.3 Index]