summary.skewhypFit {SkewHyperbolic} | R Documentation |
Summarising the Skew Hyperbolic Student t-Distribution Fit
Description
summary
Method for class "skewhypFit"
.
Usage
## S3 method for class 'skewhypFit'
summary(object, ...)
## S3 method for class 'summary.skewhypFit'
print(x, digits = max(3,
getOption("digits") - 3), ...)
Arguments
object |
An object of class |
x |
An object of class |
digits |
The number of significant digits to use when printing. |
... |
Further arguments passed to or from other methods. |
Details
summary.skewhypFit
calculates standard errors for errors for
the estimates of ,
,
and
of the skew hyperbolic Student
t-distribution parameter vector
param
, if the Hessian
from the call to optim
or nlm
is
available. Because the parameters in the call to the optimiser are
,
,
and
the delta method is used to obtain standard
errors for
and
Value
If the Hessian is available summary.skewhyhpFit
computes
standard errors of ,
,
and
, and adds them to
object
as
object$sds
. Otherwise, no calculations are performed and the
composition object
is unaltered.
summary.skewhypFit
invisibly returns x
with class
changed to summary.skewhypFit
.
See skewhypFit
for the composition of an object of class
skewhypFit
.
print.summary.skewhypFit
prints a summary in the same format as
print.skewhypFit
when the Hessian is not available from
the fit. When the Hessian is available, the standard errors for the
parameter estimates are printed in parentheses beneath the parameter
estimates, in the manner of fitdistr
in the package MASS
.
Author(s)
David Scott d.scott@auckland.ac.nz, Fiona Grimson
References
Aas, K. and Haff, I. H. (2006). The Generalised Hyperbolic Skew Student's t-distribution, Journal of Financial Econometrics, 4, 275–309.
See Also
Examples
## Continuing the skewhypFit(.) example:
data(lrdji)
djfit <- skewhypFit(lrdji, print = FALSE, plot = FALSE, hessian = TRUE)
print(djfit)
summary(djfit)