summarise_estimator {SimNPH} | R Documentation |
Generic Summarise function for esitmators
Description
Generic Summarise function for esitmators
Usage
summarise_estimator(
est,
real,
lower = NULL,
upper = NULL,
null = NULL,
est_sd = NULL,
name = NULL
)
Arguments
est |
estimator, expression evaluated in results |
real |
real summary statistic, expression evaluated in condition |
lower |
lower CI, expression evaluated in results |
upper |
upper CI, expression evaluated in results |
null |
parameter value under the null hypothesis |
est_sd |
standard deviation estimated by the method, evaluated in results |
name |
name for the summarise function, appended to the name of the analysis method in the final results |
Details
The different parameters are evaluated in different envionments, est
,
lower
, upper
, est_sd
refer to output of the method and are evaluated in
the results dataset. real
refers to a real value of a summary statistic in
this scenario and is therefore evaluated in the condition dataset. null
and
name
are constants and directly evaluated when the function is defined.
The argument null
, the parameter value under the null hypothesis is used to
output the rejection rate based on the confidence intervall. Which is output
in the column null_cover
Value
A function that can be used in Summarise that returns a data frame with summary statistics of the performance measures in the columns.
Examples
# generate the design matrix and append the true summary statistics
condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),
by=NULL
) |>
tail(4) |>
head(1) |>
true_summary_statistics_delayed_effect(cutoff_stats = 15)
# create some summarise functions
summarise_all <- create_summarise_function(
coxph=summarise_estimator(hr, gAHR_15, hr_lower, hr_upper, name="gAHR"),
coxph=summarise_estimator(hr, hazard_trt/hazard_ctrl, hr_lower, hr_upper, name="HR"),
coxph=summarise_estimator(hr, NA_real_, name="NA")
)
# runs simulations
sim_results <- runSimulation(
design=condition,
replications=10,
generate=generate_delayed_effect,
analyse=list(
coxph=analyse_coxph()
),
summarise = summarise_all
)
# mse is missing for the summarise function in which the real value was NA
sim_results[, names(sim_results) |> grepl(pattern="\\.mse$")]
# but the standard deviation can be estimated in all cases
sim_results[, names(sim_results) |> grepl(pattern="\\.sd_est$")]