| summarise_estimator {SimNPH} | R Documentation |
Generic Summarise function for esitmators
Description
Generic Summarise function for esitmators
Usage
summarise_estimator(
est,
real,
lower = NULL,
upper = NULL,
null = NULL,
est_sd = NULL,
name = NULL
)
Arguments
est |
estimator, expression evaluated in results |
real |
real summary statistic, expression evaluated in condition |
lower |
lower CI, expression evaluated in results |
upper |
upper CI, expression evaluated in results |
null |
parameter value under the null hypothesis |
est_sd |
standard deviation estimated by the method, evaluated in results |
name |
name for the summarise function, appended to the name of the analysis method in the final results |
Details
The different parameters are evaluated in different envionments, est,
lower, upper, est_sd refer to output of the method and are evaluated in
the results dataset. real refers to a real value of a summary statistic in
this scenario and is therefore evaluated in the condition dataset. null and
name are constants and directly evaluated when the function is defined.
The argument null, the parameter value under the null hypothesis is used to
output the rejection rate based on the confidence intervall. Which is output
in the column null_cover
Value
A function that can be used in Summarise that returns a data frame with summary statistics of the performance measures in the columns.
Examples
# generate the design matrix and append the true summary statistics
condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),
by=NULL
) |>
tail(4) |>
head(1) |>
true_summary_statistics_delayed_effect(cutoff_stats = 15)
# create some summarise functions
summarise_all <- create_summarise_function(
coxph=summarise_estimator(hr, gAHR_15, hr_lower, hr_upper, name="gAHR"),
coxph=summarise_estimator(hr, hazard_trt/hazard_ctrl, hr_lower, hr_upper, name="HR"),
coxph=summarise_estimator(hr, NA_real_, name="NA")
)
# runs simulations
sim_results <- runSimulation(
design=condition,
replications=10,
generate=generate_delayed_effect,
analyse=list(
coxph=analyse_coxph()
),
summarise = summarise_all
)
# mse is missing for the summarise function in which the real value was NA
sim_results[, names(sim_results) |> grepl(pattern="\\.mse$")]
# but the standard deviation can be estimated in all cases
sim_results[, names(sim_results) |> grepl(pattern="\\.sd_est$")]