progression_cdf_fun {SimNPH} | R Documentation |
Fast implementation of cumulative density function, survival function, ... for scenarios with progression
Description
Fast implementation of cumulative density function, survival function, ... for scenarios with progression
Usage
progression_cdf_fun(hazard_before, prog_rate, hazard_after)
progression_surv_fun(hazard_before, prog_rate, hazard_after)
progression_pdf_fun(hazard_before, prog_rate, hazard_after)
progression_haz_fun(hazard_before, prog_rate, hazard_after)
progression_quant_fun(hazard_before, prog_rate, hazard_after)
Arguments
hazard_before |
hazard for death before progression |
prog_rate |
hazard rate for progression |
hazard_after |
hazard for death after progression |
Details
Calculations are done by viewing the disease process as a three state (non-progressed disease, progressed disease, death) continuous time markov chain. Calculations can then easily be done using the matrix exponential function and Q-matrices.
Value
A function with one parameter, a vector of times/probabilities where the function should be evaluated.
Functions
-
progression_cdf_fun()
: cumulative density function for progression scenario -
progression_surv_fun()
: survival function for progression scenario -
progression_pdf_fun()
: probability density function for progression scenario -
progression_haz_fun()
: hazard function for progression scenario -
progression_quant_fun()
: quantile function for progression scenario
Examples
cdf <- progression_cdf_fun(
hazard_before = m2r(48),
prog_rate = m2r(18),
hazard_after = m2r(6)
)
t <- 0:1000
plot(t, cdf(t), type="l")
surv <- progression_surv_fun(
hazard_before = m2r(48),
prog_rate = m2r(18),
hazard_after = m2r(6)
)
t <- 0:1000
plot(t, surv(t), type="l")
pdf <- progression_pdf_fun(
hazard_before = m2r(48),
prog_rate = m2r(18),
hazard_after = m2r(6)
)
t <- 0:1000
plot(t, pdf(t), type="l")
haz <- progression_haz_fun(
hazard_before = m2r(48),
prog_rate = m2r(18),
hazard_after = m2r(6)
)
t <- 0:1000
plot(t, haz(t), type="l")
quant <- progression_quant_fun(
hazard_before = m2r(48),
prog_rate = m2r(18),
hazard_after = m2r(6)
)
p <- seq(0,0.99, by=.01)
plot(p, quant(p), type="l")