upsert_merge {SimNPH} | R Documentation |
Merge results from additional or updated simulations
Description
Merge results from additional or updated simulations
Usage
upsert_merge(x, y, by)
merge_additional_results(
old,
new,
design_names = NULL,
descriptive_regex = NULL
)
Arguments
x |
left data.frame |
y |
right data.frame |
by |
columns to match by |
old |
old results |
new |
new/additional results |
design_names |
names of the paramterst |
descriptive_regex |
regular expression for columns of descriptive statistics |
Details
updates columns in x with values from matched rows in y and add
joins columns from y not present in x. Calls rows_upsert
and then
full_join
.
if design_names
is omitted its value is taken from the
design_names
attribute of the simulation results.
If descriptive_regex
is given, columns matching the regular expression in
both datasets are compared, a warning is given, if the values of those
columns do not match. This is intended to compare descriptive statistics or
results of unchanged analysis methods to ensure, that both results stem
from an exact replication of the simulation results.
Value
a data.frame
a data.frame of the merged simulation results
Functions
-
upsert_merge()
: Update or add Rows and Columns
Examples
a <- data.frame(x=5:2, y=5:2, a=5:2)
b <- data.frame(x=1:4, y=1:4+10, b=1:4*10)
upsert_merge(a, b, by="x")
condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),
by=NULL
) |>
tail(4) |>
true_summary_statistics_delayed_effect(cutoff_stats = 15)
condition_1 <- condition[1:2, ]
condition_2 <- condition[3:4, ]
# runs simulations
sim_results_1 <- runSimulation(
design=condition_1,
replications=100,
generate=generate_delayed_effect,
analyse=list(
logrank = analyse_logrank(alternative = "one.sided"),
maxcombo = analyse_logrank(alternative = "one.sided")
),
summarise = create_summarise_function(
logrank = summarise_test(0.025),
maxcombo = summarise_test(0.025)
)
)
sim_results_2 <- runSimulation(
design=condition_2,
replications=100,
generate=generate_delayed_effect,
analyse=list(
logrank = analyse_logrank(alternative = "one.sided"),
maxcombo = analyse_logrank(alternative = "one.sided")
),
summarise = create_summarise_function(
logrank = summarise_test(0.025),
maxcombo = summarise_test(0.025)
)
)
sim_results_3 <- runSimulation(
design=condition,
replications=100,
generate=generate_delayed_effect,
analyse=list(
mwlrt = analyse_modelstly_weighted(t_star = m2d(24))
),
summarise = create_summarise_function(
mwlrt = summarise_test(0.025)
)
)
all_results <- sim_results_1 |>
merge_additional_results(sim_results_2) |>
merge_additional_results(sim_results_3)
all_results |>
subset(select=c(delay, logrank.rejection_0.025, maxcombo.rejection_0.025, mwlrt.rejection_0.025))