findintercorr_cont {SimMultiCorrData} | R Documentation |
Calculate Intermediate MVN Correlation for Continuous Variables Generated by Polynomial Transformation
Description
This function finds the roots to the equations in intercorr_fleish
or
intercorr_poly
using nleqslv
. It is used in
findintercorr
and
findintercorr2
to find the intermediate correlation for standard normal random variables
which are used in Fleishman's Third-Order (doi: 10.1007/BF02293811) or Headrick's Fifth-Order
(doi: 10.1016/S0167-9473(02)00072-5) Polynomial Transformation. It works for two or three
variables in the case of method
= "Fleishman", or two, three, or four variables in the case of method
= "Polynomial".
Otherwise, Headrick & Sawilowsky (1999, doi: 10.1007/BF02294317) recommend using the technique of Vale & Maurelli (1983,
doi: 10.1007/BF02293687), in which
the intermediate correlations are found pairwise and then eigen value decomposition is used on the intermediate
correlation matrix. This function would not ordinarily be called by the user.
Usage
findintercorr_cont(method = c("Fleishman", "Polynomial"), constants, rho_cont)
Arguments
method |
the method used to generate the continuous variables. "Fleishman" uses Fleishman's third-order polynomial transformation and "Polynomial" uses Headrick's fifth-order transformation. |
constants |
a matrix with either 2, 3, or 4 rows, each a vector of constants c0, c1, c2, c3 (if |
rho_cont |
a matrix of target correlations among continuous variables; if |
Value
a list containing the results from nleqslv
References
Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43, 521-532. doi: 10.1007/BF02293811.
Hasselman B (2018). nleqslv: Solve Systems of Nonlinear Equations. R package version 3.3.2. https://CRAN.R-project.org/package=nleqslv
Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Multivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711. doi: 10.1016/S0167-9473(02)00072-5. (ScienceDirect)
Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Distributions. Journal of Modern Applied Statistical Methods, 3(1), 65-71. doi: 10.22237/jmasm/1083370080.
Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Density Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical Computation and Simulation, 77, 229-249. doi: 10.1080/10629360600605065.
Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending the Fleishman Power Method. Psychometrika, 64, 25-35. doi: 10.1007/BF02294317.
Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power Method Transformation Using Mathematica. Journal of Statistical Software, 19(3), 1 - 17. doi: 10.18637/jss.v019.i03.
Vale CD & Maurelli VA (1983). Simulating Multivariate Nonnormal Distributions. Psychometrika, 48, 465-471. doi: 10.1007/BF02293687.
See Also
poly
, fleish
, power_norm_corr
,
pdf_check
, find_constants
,
intercorr_fleish
,
intercorr_poly
, nleqslv