| SimInf_abc-class {SimInf} | R Documentation |
Class "SimInf_abc"
Description
Class "SimInf_abc"
Slots
modelThe
SimInf_modelobject to estimate parameters in.priorsA
data.framecontaining the four columnsparameter,distribution,p1andp2. The columnparametergives the name of the parameter referred to in the model. The columndistributioncontains the name of the prior distribution. Valid distributions are 'gamma', 'normal' or 'uniform'. The columnp1is a numeric vector with the first hyperparameter for each prior: 'gamma') shape, 'normal') mean, and 'uniform') lower bound. The columnp2is a numeric vector with the second hyperparameter for each prior: 'gamma') rate, 'normal') standard deviation, and 'uniform') upper bound.targetCharacter vector (
gdataorldata) that determines if the ABC-SMC method estimates parameters inmodel@gdataor inmodel@ldata.parsIndex to the parameters in
target.npropAn integer vector with the number of simulated proposals in each generation.
fnA function for calculating the summary statistics for the simulated trajectory and determine the distance for each particle, see
abcfor more details.toleranceA numeric matrix (number of summary statistics
\timesnumber of generations) where each column contains the tolerances for a generation and each row contains a sequence of gradually decreasing tolerances.xA numeric array (number of particles
\timesnumber of parameters\timesnumber of generations) with the parameter values for the accepted particles in each generation. Each row is one particle.weightA numeric matrix (number of particles
\timesnumber of generations) with the weights for the particlesxin the corresponding generation.distanceA numeric array (number of particles
\timesnumber of summary statistics\timesnumber of generations) with the distance for the particlesxin each generation. Each row contains the distance for a particle and each column contains the distance for a summary statistic.essA numeric vector with the effective sample size (ESS) in each generation. The effective sample size is computed as
\left(\sum_{i=1}^N\!(w_{g}^{(i)})^2\right)^{-1},where
w_{g}^{(i)}is the normalized weight of particleiin generationg.