sim_test {SimDissolution} | R Documentation |
Bootstrap test for the assessment of similarity of drug dissolutions profiles via maximum deviation
Description
Function for testing whether two dissolution profiles are similar concerning the
hypotheses H_0: \max_{t\in\mathcal{T}} |m_1(t,\beta_1)-m_2(t,\beta_2)|\geq \epsilon\ vs.\
H_1: \max_{t\in\mathcal{T}} |m_1(t,\beta_1)-m_2(t,\beta_2)|< \epsilon.
$m_1$ and $m_2$ are pharmacokinetic models chosen from a candidate set containing a First order, Hixson-Crowell,Higuchi, Weibull and a logistic model.
See Moellenhoff et al. (2018) <doi:10.1002/sim.7689> for details.
Usage
sim_test(time1, time2 = time1, conc1, conc2, m1, m2, epsilon = 10,
B = 1000, plot = FALSE)
Arguments
time1 , time2 |
vectors containing the time points of measurements for each of the two formulations; if not further specified the time points are identical in both groups |
conc1 , conc2 |
data frames or matrices containing the concentrations obtained for each of the two formulations (see the example) |
m1 , m2 |
model types. Built-in models are "firstorder", "hixson", "higuchi", "weibull" and "logistic" |
epsilon |
positive argument specifying the equivalence threshold (in %), default is 10% corresponding to an f2 of 50 according to current guidelines |
B |
number of bootstrap replications. If missing, default value of B is 1000 |
plot |
if TRUE, a plot of the absolute difference curve of the two estimated models will be given. The default is FALSE. |
Value
A list containing the p.value, the types of models, the f2, the maximum absolute difference of the models, the estimated model parameters, the number of bootstrap replications and a summary of the bootstrap test statistic. Furthermore plots of the two models are given.
References
Moellenhoff et al. (2018) <doi:10.1002/sim.7689>
EMA (2010) <https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf>
Examples
data(example_data)
conc1 <- select(filter(example_data,Group=="1"),-Tablet,-Group)
conc2 <- select(filter(example_data,Group=="2"),-Tablet,-Group)
time <- c(10,15,20,30,45,60)
sim_test(time1=time,time2=time,conc1=conc1,conc2=conc2,m1="logistic",m2="logistic",B=500,plot=TRUE)