bias {SimDesign} | R Documentation |
Compute (relative/standardized) bias summary statistic
Description
Computes the (relative) bias of a sample estimate from the parameter value.
Accepts estimate and parameter values, as well as estimate values which are in deviation form.
If relative bias is requested the estimate
and parameter
inputs are both required.
Usage
bias(
estimate,
parameter = NULL,
type = "bias",
abs = FALSE,
percent = FALSE,
unname = FALSE
)
Arguments
estimate |
a |
parameter |
a |
type |
type of bias statistic to return. Default ( |
abs |
logical; find the absolute bias between the parameters and estimates? This effectively
just applies the |
percent |
logical; change returned result to percentage by multiplying by 100? Default is FALSE |
unname |
logical; apply |
Value
returns a numeric
vector indicating the overall (relative/standardized)
bias in the estimates
Author(s)
Phil Chalmers rphilip.chalmers@gmail.com
References
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
See Also
Examples
pop <- 2
samp <- rnorm(100, 2, sd = 0.5)
bias(samp, pop)
bias(samp, pop, type = 'relative')
bias(samp, pop, type = 'standardized')
dev <- samp - pop
bias(dev)
# equivalent here
bias(mean(samp), pop)
# matrix input
mat <- cbind(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
bias(mat, parameter = 2)
bias(mat, parameter = 2, type = 'relative')
bias(mat, parameter = 2, type = 'standardized')
# different parameter associated with each column
mat <- cbind(M1=rnorm(1000, 2, sd = 0.25), M2 = rnorm(1000, 3, sd = .25))
bias(mat, parameter = c(2,3))
# same, but with data.frame
df <- data.frame(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
bias(df, parameter = c(2,2))
# parameters of the same size
parameters <- 1:10
estimates <- parameters + rnorm(10)
bias(estimates, parameters)
# relative difference dividing by the magnitude of parameters
bias(estimates, parameters, type = 'abs_relative')
# relative bias as a percentage
bias(estimates, parameters, type = 'abs_relative', percent = TRUE)
# percentage error (PE) statistic given alpha (Type I error) and EDR() result
# edr <- EDR(results, alpha = .05)
edr <- c(.04, .05, .06, .08)
bias(matrix(edr, 1L), .05, type = 'relative', percent = TRUE)