SimShiny {SimDesign} | R Documentation |
Generate a basic Monte Carlo simulation GUI template
Description
This function generates suitable stand-alone code from the shiny
package to create simple
web-interfaces for performing single condition Monte Carlo simulations. The template
generated is relatively minimalistic, but allows the user to quickly and easily
edit the saved files to customize the associated shiny elements as they see fit.
Usage
SimShiny(filename = NULL, dir = getwd(), design, ...)
Arguments
filename |
an optional name of a text file to save the server and UI components (e.g., 'mysimGUI.R'). If omitted, the code will be printed to the R console instead |
dir |
the directory to write the files to. Default is the working directory |
design |
|
... |
arguments to be passed to |
Author(s)
Phil Chalmers rphilip.chalmers@gmail.com
References
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
See Also
Examples
## Not run:
Design <- createDesign(sample_size = c(30, 60, 90, 120),
group_size_ratio = c(1, 4, 8),
standard_deviation_ratio = c(.5, 1, 2))
Generate <- function(condition, fixed_objects) {
N <- condition$sample_size
grs <- condition$group_size_ratio
sd <- condition$standard_deviation_ratio
if(grs < 1){
N2 <- N / (1/grs + 1)
N1 <- N - N2
} else {
N1 <- N / (grs + 1)
N2 <- N - N1
}
group1 <- rnorm(N1)
group2 <- rnorm(N2, sd=sd)
dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)), DV = c(group1, group2))
dat
}
Analyse <- function(condition, dat, fixed_objects) {
welch <- t.test(DV ~ group, dat)
ind <- t.test(DV ~ group, dat, var.equal=TRUE)
# In this function the p values for the t-tests are returned,
# and make sure to name each element, for future reference
ret <- c(welch = welch$p.value, independent = ind$p.value)
ret
}
Summarise <- function(condition, results, fixed_objects) {
#find results of interest here (e.g., alpha < .1, .05, .01)
ret <- EDR(results, alpha = .05)
ret
}
# test that it works
# Final <- runSimulation(design=Design, replications=5,
# generate=Generate, analyse=Analyse, summarise=Summarise)
# print code to console
SimShiny(design=Design, generate=Generate, analyse=Analyse,
summarise=Summarise, verbose=FALSE)
# save shiny code to file
SimShiny('app.R', design=Design, generate=Generate, analyse=Analyse,
summarise=Summarise, verbose=FALSE)
# run the application
shiny::runApp()
shiny::runApp(launch.browser = TRUE) # in web-browser
## End(Not run)