ECR {SimDesign} | R Documentation |
Compute empirical coverage rates
Description
Computes the detection rate for determining empirical coverage rates given a set of estimated
confidence intervals. Note that using 1 - ECR(CIs, parameter)
will provide the empirical
detection rate. Also supports computing the average width of the CIs, which may be useful when comparing
the efficiency of CI estimators.
Usage
ECR(
CIs,
parameter,
tails = FALSE,
CI_width = FALSE,
complement = FALSE,
names = NULL,
unname = FALSE
)
Arguments
CIs |
a |
parameter |
a numeric scalar indicating the fixed parameter value. Alternative, a |
tails |
logical; when TRUE returns a vector of length 2 to indicate the proportion of times
the parameter was lower or higher than the supplied interval, respectively. This is mainly only
useful when the coverage region is not expected to be symmetric, and therefore is generally not
required. Note that |
CI_width |
logical; rather than returning the overall coverage rate, return the average width of the CIs instead? Useful when comparing the efficiency of different CI estimators |
complement |
logical; rather than computing the proportion of population parameters within the CI, return the proportion outside the advertised CI (1 - ECR = alpha). In the case where only one value is provided, which normally would return a 0 if outside the CI or 1 if inside, the values will be switched (useful when using, for example, CI tests of for the significance of parameters) |
names |
an optional character vector used to name the returned object. Generally useful when more than one CI estimate is investigated at once |
unname |
logical; apply |
Author(s)
Phil Chalmers rphilip.chalmers@gmail.com
References
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
See Also
Examples
CIs <- matrix(NA, 100, 2)
for(i in 1:100){
dat <- rnorm(100)
CIs[i,] <- t.test(dat)$conf.int
}
ECR(CIs, 0)
ECR(CIs, 0, tails = TRUE)
ECR(CIs, 0, complement = TRUE) # proportion outside interval
# single vector input
CI <- c(-1, 1)
ECR(CI, 0)
ECR(CI, 0, complement = TRUE)
ECR(CI, 2)
ECR(CI, 2, complement = TRUE)
ECR(CI, 2, tails = TRUE)
# parameters of the same size as CI
parameters <- 1:10
CIs <- cbind(parameters - runif(10), parameters + runif(10))
parameters <- parameters + rnorm(10)
ECR(CIs, parameters)
# average width of CIs
ECR(CIs, parameters, CI_width=TRUE)
# ECR() for multiple CI estimates in the same object
parameter <- 10
CIs <- data.frame(lowerCI_1=parameter - runif(10),
upperCI_1=parameter + runif(10),
lowerCI_2=parameter - 2*runif(10),
upperCI_2=parameter + 2*runif(10))
head(CIs)
ECR(CIs, parameter)
ECR(CIs, parameter, tails=TRUE)
ECR(CIs, parameter, CI_width=TRUE)
# often a good idea to provide names for the output
ECR(CIs, parameter, names = c('this', 'that'))
ECR(CIs, parameter, CI_width=TRUE, names = c('this', 'that'))
ECR(CIs, parameter, tails=TRUE, names = c('this', 'that'))