intercorr_cont_pois2 {SimCorrMix} | R Documentation |
Calculate Intermediate MVN Correlation for Continuous - Poisson Variables: Correlation Method 2
Description
This function calculates a k_cont x k_pois
intermediate matrix of correlations for the k_cont
continuous and
k_pois
Poisson variables. It extends the methods of Demirtas et al. (2012, doi: 10.1002/sim.5362) and
Barbiero & Ferrari (2015, doi: 10.1002/asmb.2072) by:
1) including non-normal continuous and regular or zero-inflated Poisson variables
2) allowing the continuous variables to be generated via Fleishman's third-order or Headrick's fifth-order transformation, and
3) since the count variables are treated as ordinal, using the point-polyserial and polyserial correlations to calculate the
intermediate correlations (similar to findintercorr_cont_cat
) in
SimMultiCorrData
).
Here, the intermediate correlation between Z1 and Z2 (where Z1 is the standard normal variable transformed using Headrick's fifth-order
or Fleishman's third-order method to produce a continuous variable Y1, and Z2 is the standard normal variable used to generate a
Poisson variable via the inverse CDF method) is calculated by dividing the target correlation by a correction factor. The
correction factor is the product of the point-polyserial correlation between Y2 and Z2 (described in Olsson et al., 1982,
doi: 10.1007/BF02294164) and the power method correlation (described in Headrick & Kowalchuk, 2007, doi: 10.1080/10629360600605065)
between Y1 and Z1. After the maximum support value has been found using maxcount_support
, the point-polyserial correlation is given by:
\rho_{Y2,Z2} = \frac{1}{\sigma_{Y2}} \sum_{j = 1}^{r-1} \phi(\tau_{j})(y2_{j+1} - y2_{j})
where
\phi(\tau) = (2\pi)^{-1/2} * exp(-0.5 \tau^2)
Here, y_{j}
is the j-th support
value and \tau_{j}
is \Phi^{-1}(\sum_{i=1}^{j} Pr(Y = y_{i}))
. The power method correlation is given by:
\rho_{Y1, Z1} = c_1 + 3c_3 + 15c_5,
where c_5 = 0
if method
= "Fleishman". The function is used in
intercorr2
and corrvar2
. This function would not ordinarily be called by the user.
Usage
intercorr_cont_pois2(method = c("Fleishman", "Polynomial"),
constants = NULL, rho_cont_pois = NULL, pois_marg = list(),
pois_support = list())
Arguments
method |
the method used to generate the |
constants |
a matrix with |
rho_cont_pois |
a |
pois_marg |
a list of length equal to |
pois_support |
a list of length equal to |
Value
a k_cont x k_pois
matrix whose rows represent the k_cont
continuous variables and columns represent the
k_pois
Poisson variables
References
Please see additional references in intercorr_cont_pois
.
Barbiero A & Ferrari PA (2015). Simulation of correlated Poisson variables. Applied Stochastic Models in Business and Industry, 31:669-80. doi: 10.1002/asmb.2072.
See Also
find_constants
, power_norm_corr
,
intercorr2
, corrvar2