SimComp-package {SimComp} | R Documentation |
Simultaneous Comparisons for Multiple Endpoints
Description
Simultaneous tests and confidence intervals are provided for one-way experimental designs with one or many normally distributed, primary response variables (endpoints). Differences (Hasler and Hothorn, 2011 <doi:10.2202/1557-4679.1258>) or ratios (Hasler and Hothorn, 2012 <doi:10.1080/19466315.2011.633868>) of means can be considered. Various contrasts can be chosen, unbalanced sample sizes are allowed as well as heterogeneous variances (Hasler and Hothorn, 2008 <doi:10.1002/bimj.200710466>) or covariance matrices (Hasler, 2014 <doi:10.1515/ijb-2012-0015>).
Details
The DESCRIPTION file:
Package: | SimComp |
Type: | Package |
Title: | Simultaneous Comparisons for Multiple Endpoints |
Version: | 3.3 |
Date: | 2019-08-26 |
Author: | Mario Hasler, Christof Kluss |
Maintainer: | Mario Hasler <hasler@email.uni-kiel.de> |
Imports: | mvtnorm, multcomp, mratios, graphics, stats |
Description: | Simultaneous tests and confidence intervals are provided for one-way experimental designs with one or many normally distributed, primary response variables (endpoints). Differences (Hasler and Hothorn, 2011 <doi:10.2202/1557-4679.1258>) or ratios (Hasler and Hothorn, 2012 <doi:10.1080/19466315.2011.633868>) of means can be considered. Various contrasts can be chosen, unbalanced sample sizes are allowed as well as heterogeneous variances (Hasler and Hothorn, 2008 <doi:10.1002/bimj.200710466>) or covariance matrices (Hasler, 2014 <doi:10.1515/ijb-2012-0015>). |
License: | GPL |
LazyLoad: | yes |
Index of help topics:
DfSattDiff Degrees of Freedom Accoding to Satterthwaite (1946) for Differences of Means DfSattRat Degrees of Freedom Accoding to Satterthwaite (1946) for Ratios of Means SimCiDiff Simultaneous Confidence Intervals for General Contrasts (Differences) of Means of Multiple Endpoints SimCiRat Simultaneous Confidence Intervals for General Contrasts (Ratios) of Means of Multiple Endpoints SimComp-package Simultaneous Comparisons for Multiple Endpoints SimTestDiff Simultaneous Tests for General Contrasts (Differences) of Means of Multiple Endpoints SimTestRat Simultaneous Tests for General Contrasts (Ratios) of Means of Multiple Endpoints coagulation Data from a clinical study of three sets of extracorporeal circulation in heart-lung machines ermvnorm Multivariate Normal Random Numbers with Exact Parameters plot.SimCi Plot function for SimCi-objects print.SimCi Print function for SimCi-objects print.SimTest Print function for SimTest-objects rcm Random Correlation Matrices summary.SimCi Summary function for SimCi-objects summary.SimTest Summary function for SimTest-objects
Author(s)
Mario Hasler, Christof Kluss
Maintainer: Mario Hasler <hasler@email.uni-kiel.de>
Thanks to: Frank Schaarschmidt, Gemechis Djira Dilba, Kornelius Rohmeyer
References
Hasler, M. and Hothorn, L.A. (2018): Multi-arm trials with multiple primary endpoints and missing values. Statistics in Medicine 37, 710–721, <doi:10.1002/sim.7542>.
Hasler, M. (2014): Multiple contrast tests for multiple endpoints in the presence of heteroscedasticity. The International Journal of Biostatistics 10, 17–28, <doi:10.1515/ijb-2012-0015>.
Hasler, M. and Hothorn, L.A. (2012): A multivariate Williams-type trend procedure. Statistics in Biopharmaceutical Research 4, 57–65, <doi:10.1080/19466315.2011.633868>.
Hasler, M. and Hothorn, L.A. (2011): A Dunnett-type procedure for multiple endpoints. The International Journal of Biostatistics 7, Article 3, <doi:10.2202/1557-4679.1258>.
Hasler, M. and Hothorn, L.A. (2008): Multiple contrast tests in the presence of heteroscedasticity. Biometrical Journal 50, 793–800, <doi:10.1002/bimj.200710466>.
Dilba, G. et al. (2006): Simultaneous confidence sets and confidence intervals for multiple ratios. Journal of Statistical Planning and Inference 136, 2640–2658, <doi:10.1016/j.jspi.2004.11.009>.
See Also
Examples
# Example 1:
# A comparison of the groups B and H against the standard S, for endpoint
# Thromb.count, assuming unequal variances for the groups. This is an
# extension of the well-known Dunnett-test to the case of heteroscedasticity.
data(coagulation)
comp1 <- SimTestDiff(data=coagulation, grp="Group", resp="Thromb.count",
type="Dunnett", base=3, alternative="greater", covar.equal=FALSE)
comp1
# Example 2:
# A comparison of the groups B and H against the standard S, simultaneously
# for all endpoints, assuming unequal covariance matrices for the groups. This is
# an extension of the well-known Dunnett-test to the case of heteroscedasticity
# and multiple endpoints.
data(coagulation)
comp2 <- SimTestDiff(data=coagulation, grp="Group", resp=c("Thromb.count","ADP","TRAP"),
type="Dunnett", base=3, alternative="greater", covar.equal=FALSE)
summary(comp2)