BM {Sim.DiffProc} | R Documentation |
Brownian motion, Brownian bridge, geometric Brownian motion, and arithmetic Brownian motion simulators
Description
The (S3) generic function for simulation of brownian motion, brownian bridge, geometric brownian motion, and arithmetic brownian motion.
Usage
BM(N, ...)
BB(N, ...)
GBM(N, ...)
ABM(N, ...)
## Default S3 method:
BM(N =1000,M=1,x0=0,t0=0,T=1,Dt=NULL, ...)
## Default S3 method:
BB(N =1000,M=1,x0=0,y=0,t0=0,T=1,Dt=NULL, ...)
## Default S3 method:
GBM(N =1000,M=1,x0=1,t0=0,T=1,Dt=NULL,theta=1,sigma=1, ...)
## Default S3 method:
ABM(N =1000,M=1,x0=0,t0=0,T=1,Dt=NULL,theta=1,sigma=1, ...)
Arguments
N |
number of simulation steps. |
M |
number of trajectories. |
x0 |
initial value of the process at time |
y |
terminal value of the process at time |
t0 |
initial time. |
T |
final time. |
Dt |
time step of the simulation (discretization). If it is |
theta |
the interest rate of the |
sigma |
the volatility of the |
... |
potentially further arguments for (non-default) methods. |
Details
The function BM
returns a trajectory of the standard Brownian motion (Wiener process) in the time interval [t_{0},T]
. Indeed, for W(dt)
it holds true that
W(dt) \rightarrow W(dt) - W(0) \rightarrow \mathcal{N}(0,dt)
, where \mathcal{N}(0,1)
is normal distribution
Normal
.
The function BB
returns a trajectory of the Brownian bridge starting at x_{0}
at time t_{0}
and ending
at y
at time T
; i.e., the diffusion process solution of stochastic differential equation:
dX_{t}= \frac{y-X_{t}}{T-t} dt + dW_{t}
The function GBM
returns a trajectory of the geometric Brownian motion starting at x_{0}
at time t_{0}
;
i.e., the diffusion process solution of stochastic differential equation:
dX_{t}= \theta X_{t} dt + \sigma X_{t} dW_{t}
The function ABM
returns a trajectory of the arithmetic Brownian motion starting at x_{0}
at time t_{0}
;
i.e.,; the diffusion process solution of stochastic differential equation:
dX_{t}= \theta dt + \sigma dW_{t}
Value
X |
an visible |
Author(s)
A.C. Guidoum, K. Boukhetala.
References
Allen, E. (2007). Modeling with Ito stochastic differential equations. Springer-Verlag, New York.
Jedrzejewski, F. (2009). Modeles aleatoires et physique probabiliste. Springer-Verlag, New York.
Henderson, D and Plaschko, P. (2006). Stochastic differential equations in science and engineering. World Scientific.
See Also
This functions BM
, BBridge
and GBM
are available in other packages such as "sde".
Examples
op <- par(mfrow = c(2, 2))
## Brownian motion
set.seed(1234)
X <- BM(M = 100)
plot(X,plot.type="single")
lines(as.vector(time(X)),rowMeans(X),col="red")
## Brownian bridge
set.seed(1234)
X <- BB(M =100)
plot(X,plot.type="single")
lines(as.vector(time(X)),rowMeans(X),col="red")
## Geometric Brownian motion
set.seed(1234)
X <- GBM(M = 100)
plot(X,plot.type="single")
lines(as.vector(time(X)),rowMeans(X),col="red")
## Arithmetic Brownian motion
set.seed(1234)
X <- ABM(M = 100)
plot(X,plot.type="single")
lines(as.vector(time(X)),rowMeans(X),col="red")
par(op)