cv.SiER {SiER} | R Documentation |
Cross-validation for high-dimensional multivariate regression
Description
Conduct the cross-validation and build the final model for the following high dimensional multivariate regression model:
Y= \mu+X\beta+\epsilon,
where Y
is the n\times q
response matrix with q\ge 1
,
X
is the n\times p
predictor matrix, and
\epsilon
is the noise matrix. The coefficient matrix
\beta
is p\times q
and \mu
is the
intercept. The number of predictors p
can be much larger than the
sample size n
. The response is univariate if
q=1
and multivariate if q>1
.
Usage
cv.SiER(X, Y, K.cv = 5, upper.comp = 10, thresh = 0.01)
Arguments
X |
the |
Y |
the |
K.cv |
the number of CV sets. Default is 5. |
upper.comp |
the upper bound for the maximum number of components to be calculated. Default is 10. |
thresh |
a number between 0 and 1 specifying the minimum proportion of variation to be explained by each selected component relative to all the selected components. It is used to determine the maximum number of components to be calculated in the CV procedure. The optimal number of components will be selected from the integers from 1 to the minimum of upper.comp and this maximum number. A smaller thresh leads to a larger maximum number of components and a longer running time. A larger thresh value leads to a smaller running time, but may miss some important components and lead to a larger prediction error. Default is 0.01. |
Details
Based on the best rank K
approximation to X\beta
, the coefficient matrix has decomposition \beta=\sum \alpha_k w_k ^T
, where \alpha_k
is the vector so that X\alpha_k
has the maximum correlation with Y
under the restriction that X\alpha_k
has unit variance and is uncorrelated with X\alpha_1
,..., X\alpha_{k-1}
. We estimate \alpha_k
by solving a penalized generalized eigenvalue problem with penalty \tau||\alpha_k||_{\lambda}^2
where ||\alpha_k||_{\lambda}^2=(1-\lambda)||\alpha_k||_2^2+\lambda||\alpha_k||_1^2
is a mixture of the squared l_2
and squared l_1
norms. The w_k
is estimated by regressing Y
on X\alpha_k
.
Value
A fitted CV-object, which is used in the function pred.SiER
() for prediction and getcoef.SiER
() for extracting the estimated coefficient matrix.
mu |
the estimated intercept vector. |
beta |
the estimated slope coefficient matrix. |
min.error |
minimum CV error. |
scale.x |
the maximum absolute value of X used to scale X. |
X |
the input X. |
Y |
the input Y. |
params.set |
a 9*2 matrix specifying the set of values of |
error |
a list for CV errors. |
opt.K |
optimal number of components to be selected. |
opt.tau |
optimal value for |
opt.lambda |
optimal value for |
Author(s)
Ruiyan Luo and Xin Qi
References
Ruiyan Luo and Xin Qi (2017) Signal extraction approach for sparse multivariate response regression, Journal of Multivariate Statistics. 153: 83-97.
Examples
# q=1
library(MASS)
nvar=100
nvarq <- 1
sigmaY <- 0.1
sigmaX=0.1
nvar.eff=15
rho <- 0.3
Sigma=matrix(0,nvar.eff,nvar.eff)
for(i in 1:nvar.eff){
for(j in 1:nvar.eff){
Sigma[i,j]=rho^(abs(i-j))
}
}
betas.true <- matrix(0, nvar, 1)
betas.true[1:15,1]=rep(1,15)/sqrt(15)
ntest <- 100
ntrain <- 90
ntot <- ntest+ntrain
X <- matrix(0,ntot,nvar)
X[,1:nvar.eff] <- mvrnorm(n=ntot, rep(0, nvar.eff), Sigma)
X[,-(1:nvar.eff)] <- matrix(sigmaX*rnorm((nvar-nvar.eff)*dim(X)[1]),
dim(X)[1],(nvar-nvar.eff))
Y <- X%*%betas.true
Y <- Y+rnorm(ntot, 0, sigmaY)
X.train <- X[1:ntrain,]
Y.train <- Y[1:ntrain,]
X.test <- X[-(1:ntrain),]
Y.test <- Y[-(1:ntrain),]
cv.fit <- cv.SiER(X.train,Y.train, K.cv=5)
Y.pred=pred.SiER(cv.fit, X.test)
error=sum((Y.pred-Y.test)^2)/ntest
print(c("predict error=", error))
coefs=getcoef.SiER(cv.fit)
#q>1
library(MASS)
total.noise <- 0.1
rho <- 0.3
rho.e <- 0.2
nvar=500
nvarq <- 3
sigma2 <- total.noise/nvarq
sigmaX=0.1
nvar.eff=150
Sigma=matrix(0,nvar.eff,nvar.eff)
for(i in 1:nvar.eff){
for(j in 1:nvar.eff){
Sigma[i,j]=rho^(abs(i-j))
}
}
Sigma2.y <- matrix(sigma2*rho.e,nvarq, nvarq)
diag(Sigma2.y) <- sigma2
betas.true <- matrix(0, nvar, 3)
betas.true[1:15,1]=rep(1,15)/sqrt(15)
betas.true[16:45,2]=rep(0.5,30)/sqrt(30)
betas.true[46:105,3]=rep(0.25,60)/sqrt(60)
ntest <- 500
ntrain <- 90
ntot <- ntest+ntrain
X <- matrix(0,ntot,nvar)
X[,1:nvar.eff] <- mvrnorm(n=ntot, rep(0, nvar.eff), Sigma)
X[,-(1:nvar.eff)] <- matrix(sigmaX*rnorm((nvar-nvar.eff)*dim(X)[1]),
dim(X)[1],(nvar-nvar.eff))
Y <- X%*%betas.true
Y <- Y+mvrnorm(n=ntot, rep(0,nvarq), Sigma2.y)
X.train <- X[1:ntrain,]
Y.train <- Y[1:ntrain,]
X.test <- X[-(1:ntrain),]
Y.test <- Y[-(1:ntrain),]
cv.fit <- cv.SiER(X.train,Y.train, K.cv=5)
Y.pred=pred.SiER(cv.fit, X.test)
error=sum((Y.pred-Y.test)^2)/ntest
print(c("predict error=", error))