SeqMADE-package {SeqMADE} | R Documentation |
Network Module-Based Model in the Differential Expression Analysis for RNA-Seq
Description
A network module-based generalized linear model for differential expression analysis with the count-based sequence data from RNA-Seq.
Details
Package: | SeqMADE |
Type: | Package |
Version: | 1.0 |
Date: | 2016-06-27 |
License: | GPL (>2) |
LazyLoad: | yes |
The main functions in this package are
Factor
A function of constructing the Group variables, Direction variables, and the Count variables,
moduleMatrix
a function of constructing the modulematrix for all the modules,
nbGLM
Identify differential expression modules based on the GLM method using Group and Module variables,
nbGLMdir
Identify differential expression modules based on the Generalized Linear Model(GLM) using Group, Module and Direction variables, and
nbGLMdirperm
Identify differential expression modules based on the GLM method by shuffling the phenotypic variables.
Author(s)
Mingli Lei, Jia Xu, Li-Ching Huang, Lily Wang, Jing Li Maintainer: Mingli Lei<leimingli2013@sjtu.edu.cn>
References
Xu, J., Wang, L. and Li, J. (2014) Biological network module-based model for the analysis of differential expression in shotgun proteomics, J Proteome Res, 13, 5743-5750.
See Also
glm(),lm()
Examples
data(exprs)
data(networkModule)
case <- c("A1","A2","A3","A4","A5","A6","A7")
control <- c("B1","B2","B3","B4","B5","B6","B7")
factors <- Factor(exprs,case,control)
modulematrix <- moduleMatrix(exprs,networkModule)
Result1<- nbGLM(factors,14,networkModule,modulematrix,distribution="NB")
Result2<- nbGLMdir(factors,14,networkModule,modulematrix,distribution="NB")
Result3<- nbGLMdirperm(exprs,case,control,factors,networkModule,
modulematrix,10,distribution="NB")