| HybridSequenceClassifier-class {SeqDetect} | R Documentation | 
Sequence Detector
Description
The Sequence Detector class.
Details
Instantiates a Sequence Detector object. Constructor takes a number of parameters that define pre-processing
and pre-classification stages, as well as the structure of the input consolidated data stream.
These stages can be redefined again later using setInputDefinitions,HybridSequenceClassifier-method method.
See the SeqDetect vignette for examples.
Fields
- fields
- (vector, character) - A vector of all relevant consolidated data stream fields. 
- timestamp_start_field
- (character) - A name of the field having starting time point values. 
- timestamp_finish_field
- (character) - A name of the field having finishing time point values. 
- context_field
- (character) - A name of the context identifier field (key field). If NULL, then .key field is used for retrieving context identifier values. 
- preclassifier
- (HSC_PC) - A pre-classifier object. If NULL, the Sequence Detector creates new HSC_PC_None pre-classifier, which means that the input consolidated data stream must have .clazz field for retrieving classification values (input symbols in the underlying ETTs). 
- preprocessor
- (HSC_PP) - A pre-processing object. If NULL, the Sequence Detector creates new HSC_PP pre-processor having the same fields as define in the fields parameter, and ordering timestamp field as defined in timestamp_start_field. 
- decay_descriptors
- (list) - A list of decay descriptors. If NULL, token decay machanism is not used. Descriptor structure can be seen in vignettes. 
- pattern_field
- (character) - A name of the field having output symbol values, i.e., relational ETT classification output. 
- time_series_sequence_stats
- (logical) - If TRUE, ETTs are instructed to create sequence statistics. This is used whe having input time-series data streams. If FALSE, the sequence statistics are not created. 
- reuse_states
- (logical) - The parameter defined in [1]. ETTs are created so that each ETT have a state that represents each input symbol. 
- parallel_execution
- (logical) - Force parallel execution of ETTs in the Sequence Detector object. Useful when we expect higher number of ETTs in the same Sequence Detector. 
Methods
- cleanKeys(machine_id=NULL)
- 
Sequence Detector method for removing tokens and keys cleanKeys,HybridSequenceClassifier-method
- clone()
- 
Sequence Detector method for cloning clone,HybridSequenceClassifier-method
- compressMachines(ratio=0.5)
- 
Sequence Detector method for compressing the underlying set of ETTs compressMachines,HybridSequenceClassifier-method
- getMachineIdentifiers()
- 
Sequence Detector method for retrieving identifiers for the underlying set of ETTs getMachineIdentifiers,HybridSequenceClassifier-method
- induceSubmachine(threshold, isolate=FALSE)
- 
Sequence Detector method for performing statistical projections on the underlying set of ETTs induceSubmachine,HybridSequenceClassifier-method
- mergeMachines()
- 
Sequence Detector method for merging the underlying set of ETTs mergeMachines,HybridSequenceClassifier-method
- plotMachines(machine_id=NULL)
- 
Sequence Detector method for plotting the underlying set of ETTs plotMachines,HybridSequenceClassifier-method
- printMachines(machine_id=NULL, state=NULL, print_cache=TRUE, print_keys=TRUE)
- 
Sequence Detector method for printing the underlying set of ETTs to the R console printMachines,HybridSequenceClassifier-method
- process(streams, learn=TRUE, give_explain=TRUE, threshold=NULL, debug=FALSE, out_filename=NULL, ...)
- 
Sequence Detector method for processing an input streams slice process,HybridSequenceClassifier-method
- serialize()
- 
Sequence Detector method for serializing the underlying set of ETTs definitions serialize,HybridSequenceClassifier-method
- serializeToList()
- 
Sequence Detector method for serializing the underlying set of ETTs definitions to the list serializeToList,HybridSequenceClassifier-method
- setOutputPattern(states=c(), transitions=c(), pattern, machine_id=NULL)
- 
Sequence Detector method for setting the output alphabet to the underlying set of ETTs setOutputPattern,HybridSequenceClassifier-method
- setPreprocessor(preprocessor)
- 
Sequence Detector method for setting the pre-processor setPreprocessor,HybridSequenceClassifier-method
- setPreclassifier(preclassifier)
- 
Sequence Detector method for setting the pre-classifier setPreclassifier,HybridSequenceClassifier-method
- setInputDefinitions(fields, timestamp_start_field, timestamp_finish_field, context_field=NULL, preclassifier=NULL, preprocessor=NULL, pattern_field=NULL)
- 
Sequence Detector method for redefining the input definitions setInputDefinitions,HybridSequenceClassifier-method
References
[1] D. Krleža, B. Vrdoljak, and M. Brčić, Latent Process Discovery using Evolving Tokenized Transducer, IEEE Access, vol. 7, pp. 169657 - 169676, Dec. 2019