SeqAllocplot {SeqAlloc}R Documentation

Plot the evaluation criteria for the designs

Description

Provides boxplots and scatterplots of balance and predictability measures for candidate sequential allocations.

Usage

SeqAllocplot(mysim, bporder = NULL, stratum = F, cexsize = 0.7)

Arguments

mysim

output from function SeqAlloc

bporder

vector giving the randomization methods to be plotted, corresponding to the positions in mysim$schemes

stratum

logical variable of whether PBD designs should be plotted, default is FALSE

cexsize

size of characters in plot and axis, default is 0.7

Value

Produces selected plots of predictability and balance for randomization schemes.Requires user to click window or press "enter" to progress through plots.

Note

These are example plots; the plotting code can be extracted from this function or the function is easily modified if different plots are desired.

Author(s)

Xiaoshu Zhu xiaoshuzhu@westat.com and Sharon Lohr

References

Lohr, S. and X. Zhu (2015). Randomized Sequential Individual Assignment in Social Experiments: Evaluating the Design Options Prospectively. Sociological Methods and Research. [Advance online publication: December 27, 2015] doi: 10.1177/0049124115621332

See Also

SeqAlloc

Examples

sampsize <- 200
percent <- c(0.5,0.8,0.2,0.4)
set.seed(200)

xmat <- matrix(rbinom(sampsize*length(percent),1,rep(percent,sampsize)),
              nrow=sampsize,ncol=length(percent),byrow=TRUE)
colnames(xmat) <- c("C1","C2","C3","C4")
strat_factor <- xmat[,1]*4 + xmat[,2]*2 + xmat[,4] + 1

mysim <- SeqAlloc(xmat,carwt=c(.4,.3,.2,.1),strata=strat_factor,blksize=c(2,6),
                   pbcd=.7,pcar=.67,bsdtol=2,caittol=3,niter=10, seed = 30924)

SeqAllocplot(mysim,bporder = c(3,4,7,8), stratum = FALSE, cexsize=0.6)

[Package SeqAlloc version 1.0 Index]