SeqAllocplot {SeqAlloc} | R Documentation |
Plot the evaluation criteria for the designs
Description
Provides boxplots and scatterplots of balance and predictability measures for candidate sequential allocations.
Usage
SeqAllocplot(mysim, bporder = NULL, stratum = F, cexsize = 0.7)
Arguments
mysim |
output from function SeqAlloc |
bporder |
vector giving the randomization methods to be plotted, corresponding to the positions in mysim$schemes |
stratum |
logical variable of whether PBD designs should be plotted, default is FALSE |
cexsize |
size of characters in plot and axis, default is 0.7 |
Value
Produces selected plots of predictability and balance for randomization schemes.Requires user to click window or press "enter" to progress through plots.
Note
These are example plots; the plotting code can be extracted from this function or the function is easily modified if different plots are desired.
Author(s)
Xiaoshu Zhu xiaoshuzhu@westat.com and Sharon Lohr
References
Lohr, S. and X. Zhu (2015). Randomized Sequential Individual Assignment in Social Experiments: Evaluating the Design Options Prospectively. Sociological Methods and Research. [Advance online publication: December 27, 2015] doi: 10.1177/0049124115621332
See Also
Examples
sampsize <- 200
percent <- c(0.5,0.8,0.2,0.4)
set.seed(200)
xmat <- matrix(rbinom(sampsize*length(percent),1,rep(percent,sampsize)),
nrow=sampsize,ncol=length(percent),byrow=TRUE)
colnames(xmat) <- c("C1","C2","C3","C4")
strat_factor <- xmat[,1]*4 + xmat[,2]*2 + xmat[,4] + 1
mysim <- SeqAlloc(xmat,carwt=c(.4,.3,.2,.1),strata=strat_factor,blksize=c(2,6),
pbcd=.7,pcar=.67,bsdtol=2,caittol=3,niter=10, seed = 30924)
SeqAllocplot(mysim,bporder = c(3,4,7,8), stratum = FALSE, cexsize=0.6)