Mixt.fit.init {SenTinMixt} | R Documentation |
Initialization for the EM-based algorithms
Description
Runs the initialization of the EM-based algorithms used for fitting parsimonious mixtures of MSEN or MTIN distributions. Parallel computing is implemented and highly recommended for a faster calculation.
Usage
Mixt.fit.init(X, k = 1:3, density, nstartR = 100, ncores = 1, verbose = FALSE)
Arguments
X |
A data matrix with |
k |
An integer or a vector indicating the number of groups of the models. |
density |
A character indicating the density of the mixture components. Possible values are: "MSEN" or "MTIN". |
nstartR |
An integer specifying the number of random starts to be considered. |
ncores |
A positive integer indicating the number of cores used for running in parallel. |
verbose |
A logical indicating whether the running output should be displayed. |
Value
init |
A list of objects to be used by the |
Examples
set.seed(1234)
n <- 50
k <- 2
Pi <- c(0.5, 0.5)
mu <- matrix(c(0, 0, 4, 5), 2, 2)
cov.model <- "EEE"
lambda <- c(0.5, 0.5)
delta <- c(0.7, 0.7)
gamma <- c(2.62, 2.62)
theta <- c(0.1, 0.1)
density <- "MSEN"
data <- rMixt(n, k, Pi, mu, cov.model, lambda, delta, gamma, theta, density)
X <- data$X
nstartR <- 1
init.par <- Mixt.fit.init(X, k, density, nstartR)