fitDepCens {SemiPar.depCens} | R Documentation |
Fit Dependent Censoring Models
Description
This function allows to estimate the dependency parameter along all other model parameters. First, estimates the cumulative hazard function, and then at the second stage it estimates other model parameters assuming that the cumulative hazard function is known. The details for implementing the dependent censoring methodology can be found in Deresa and Van Keilegom (2023).
Usage
fitDepCens(
resData,
X,
W,
cop = c("Frank", "Gumbel", "Normal"),
dist = c("Weibull", "lognormal"),
start = NULL,
n.iter = 20,
bootstrap = TRUE,
n.boot = 50,
eps = 0.001
)
Arguments
resData |
Data matrix with three columns; Z = the observed survival time, d1 = the censoring indicator of T and d2 = the censoring indicator of C. |
X |
Data matrix with covariates related to T. |
W |
Data matrix with covariates related to C. First column of W should be a vector of ones. |
cop |
Which copula should be computed to account for dependency between T and C. This argument can take
one of the values from |
dist |
The distribution to be used for the censoring time C. Only two distributions are allowed, i.e, Weibull
and lognormal distributions. With the value |
start |
Initial values for the finite dimensional parameters. If |
n.iter |
Number of iterations; the default is |
bootstrap |
A boolean indicating whether to compute bootstrap standard errors for making inferences. |
n.boot |
Number of bootstrap samples to use in the estimation of bootstrap standard errors if |
eps |
Convergence error. This is set by the user in such away that the desired convergence is met; the default is |
Value
This function returns a fit of dependent censoring model; parameter estimates, estimate of the cumulative hazard function, bootstrap standard errors for finite-dimensional parameters, the nonparametric cumulative hazard function, etc.
References
Deresa and Van Keilegom (2023). Copula based Cox proportional hazards models for dependent censoring, Journal of the American Statistical Association (in press).
Examples
# Toy data example to illustrate implementation
n = 300
beta = c(0.5)
lambd = 0.35
eta = c(0.9,0.4)
X = cbind(rbinom(n,1,0.5))
W = cbind(rep(1,n),rbinom(n,1,0.5))
# generate dependency structure from Frank
frank.cop <- copula::frankCopula(param = 5,dim = 2)
U = copula::rCopula(n,frank.cop)
T1 = (-log(1-U[,1]))/(lambd*exp(X*beta)) # Survival time
T2 = (-log(1-U[,2]))^(1.1)*exp(W%*%eta) # Censoring time
A = runif(n,0,15) # administrative censoring time
Z = pmin(T1,T2,A)
d1 = as.numeric(Z==T1)
d2 = as.numeric(Z==T2)
resData = data.frame("Z" = Z,"d1" = d1, "d2" = d2) # should be data frame
colnames(W) <- c("ones","cov1")
colnames(X) <- "cov.surv"
# Fit dependent censoring model
fit <- fitDepCens(resData = resData, X = X, W = W, bootstrap = FALSE)
# parameter estimates
fit$parameterEstimates
# summary fit results
summary(fit)
# plot cumulative hazard vs time
plot(fit$observedTime, fit$cumhazardFunction, type = "l",xlab = "Time",
ylab = "Estimated cumulative hazard function")