SolveLI {SemiPar.depCens} | R Documentation |
Cumulative hazard function of survival time under independent censoring
Description
This function estimates the cumulative hazard function of survival time (T) under the assumption of independent censoring. The estimating equation is derived based on martingale ideas.
Usage
SolveLI(theta, resData, X)
Arguments
theta |
Estimated parameter values/initial values for finite dimensional parameters |
resData |
Data matrix with three columns; Z = the observed survival time, d1 = the censoring indicator of T and d2 = the censoring indicator of C. |
X |
Data matrix with covariates related to T |
Value
This function returns an estimated hazard function, cumulative hazard function and distinct observed survival times;
Examples
n = 200
beta = c(0.5)
lambd = 0.35
eta = c(0.9,0.4)
X = cbind(rbinom(n,1,0.5))
W = cbind(rep(1,n),rbinom(n,1,0.5))
frank.cop <- copula::frankCopula(param = 5,dim = 2)
U = copula::rCopula(n,frank.cop)
T1 = (-log(1-U[,1]))/(lambd*exp(X*beta)) # Survival time'
T2 = (-log(1-U[,2]))^(1.1)*exp(W%*%eta) # Censoring time
A = runif(n,0,15) # administrative censoring time
Z = pmin(T1,T2,A)
d1 = as.numeric(Z==T1)
d2 = as.numeric(Z==T2)
resData = data.frame("Z" = Z,"d1" = d1, "d2" = d2)
theta = c(0.3,1,0.3,1)
# Estimate cumulative hazard function
cumFit_ind <- SolveLI(theta, resData,X)
cumhaz = cumFit_ind$cumhaz
time = cumFit_ind$times
# plot hazard vs time
plot(time, cumhaz, type = "l",xlab = "Time",
ylab = "Estimated cumulative hazard function")
[Package SemiPar.depCens version 0.1.2 Index]