initiate.startValues_HReg {SemiCompRisks}R Documentation

The function that initiates starting values for a single chain.

Description

The function initiates starting values for a single chain for hazard regression (HReg) models. Users are allowed to set some non-null values to starting values for a set of parameters. The function will automatically generate starting values for any parameters whose values are not specified.

Usage

initiate.startValues_HReg(Formula, data, model, id = NULL, nChain=1,
                   beta1 = NULL, beta2 = NULL, beta3 = NULL, beta = NULL,
                   gamma.ji = NULL, theta = NULL,
                   V.j1 = NULL, V.j2 = NULL, V.j3 = NULL, V.j = NULL,
                   WB.alpha = NULL, WB.kappa = NULL, 
                   PEM.lambda1=NULL, PEM.lambda2=NULL, PEM.lambda3=NULL, PEM.lambda=NULL,
                   PEM.s1=NULL, PEM.s2=NULL, PEM.s3=NULL, PEM.s=NULL,
                   PEM.mu_lam=NULL, PEM.sigSq_lam=NULL,
                   MVN.SigmaV = NULL, Normal.zeta = NULL, 
                   DPM.class = NULL, DPM.tau = NULL)

Arguments

Formula

For BayesID_HReg, it is a data.frame containing semi-competing risks outcomes from n subjects. For BayesSurv_HReg, it is a data.frame containing univariate time-to-event outcomes from n subjects. For BayesID_HReg, it is a list containing three formula objects that correspond to hg()h_g(), gg=1,2,3. For BayesSurv_HReg, it is a formula object that corresponds to h()h().

data

a data.frame in which to interpret the variables named in the formula(s) in lin.pred.

model

a character vector that specifies the type of components in a model. Check BayesID_HReg and BayesSurv_HReg.

id

a vector of cluster information for n subjects. The cluster membership must be set to consecutive positive integers, 1:J1:J.

nChain

The number of chains.

beta1

starting values of β1\beta_1 for BayesID_HReg.

beta2

starting values of β2\beta_2 for BayesID_HReg.

beta3

starting values of β3\beta_3 for BayesID_HReg.

beta

starting values of β\beta for BayesSurv_HReg.

gamma.ji

starting values of γ\gamma for BayesID_HReg.

theta

starting values of θ\theta for BayesID_HReg.

V.j1

starting values of Vj1V_{j1} for BayesID_HReg.

V.j2

starting values of Vj2V_{j2} for BayesID_HReg.

V.j3

starting values of Vj3V_{j3} for BayesID_HReg.

V.j

starting values of VjV_{j} for BayesSurv_HReg.

WB.alpha

starting values of the Weibull parameters, αg\alpha_g for BayesID_HReg. starting values of the Weibull parameter, α\alpha for BayesSurv_HReg.

WB.kappa

starting values of the Weibull parameters, κg\kappa_g for BayesID_HReg. starting values of the Weibull parameter, κ\kappa for BayesSurv_HReg.

PEM.lambda1

starting values of the PEM parameters, λ1\lambda_1 for BayesID_HReg.

PEM.lambda2

starting values of the PEM parameters, λ2\lambda_2 for BayesID_HReg.

PEM.lambda3

starting values of the PEM parameters, λ3\lambda_3 for BayesID_HReg.

PEM.lambda

starting values of λ\lambda for BayesSurv_HReg.

PEM.s1

starting values of the PEM parameters, s1s_1 for BayesID_HReg.

PEM.s2

starting values of the PEM parameters, s2s_2 for BayesID_HReg.

PEM.s3

starting values of the PEM parameters, s3s_3 for BayesID_HReg.

PEM.s

starting values of ss for BayesSurv_HReg.

PEM.mu_lam

starting values of the PEM parameters, μλ,g\mu_{\lambda,g} for BayesID_HReg. starting values of the PEM parameter, μλ\mu_{\lambda} for BayesSurv_HReg.

PEM.sigSq_lam

starting values of the PEM parameters, σλ,g2\sigma_{\lambda,g}^2 for BayesID_HReg. starting values of the PEM parameter, σλ2\sigma_{\lambda}^2 for BayesSurv_HReg.

MVN.SigmaV

starting values of ΣV\Sigma_V in DPM models for BayesID_HReg.

Normal.zeta

starting values of ζ\zeta in DPM models for BayesSurv_HReg.

DPM.class

starting values of the class membership in DPM models for BayesID_HReg and BayesSurv_HReg.

DPM.tau

starting values of τ\tau in DPM models for BayesID_HReg and BayesSurv_HReg.

Value

initiate.startValues_HReg returns a list containing starting values for a sigle chain that can be used for BayesID_HReg and BayesSurv_HReg.

Author(s)

Sebastien Haneuse and Kyu Ha Lee
Maintainer: Kyu Ha Lee <klee15239@gmail.com>

References

Lee, K. H., Haneuse, S., Schrag, D., and Dominici, F. (2015), Bayesian semiparametric analysis of semicompeting risks data: investigating hospital readmission after a pancreatic cancer diagnosis, Journal of the Royal Statistical Society: Series C, 64, 2, 253-273.

Lee, K. H., Dominici, F., Schrag, D., and Haneuse, S. (2016), Hierarchical models for semicompeting risks data with application to quality of end-of-life care for pancreatic cancer, Journal of the American Statistical Association, 111, 515, 1075-1095.

Alvares, D., Haneuse, S., Lee, C., Lee, K. H. (2019), SemiCompRisks: An R package for the analysis of independent and cluster-correlated semi-competing risks data, The R Journal, 11, 1, 376-400.

See Also

BayesID_HReg, BayesSurv_HReg

Examples

## See Examples in \code{\link{BayesID_HReg}} and \code{\link{BayesSurv_HReg}}.

[Package SemiCompRisks version 3.4 Index]