CIBMTR {SemiCompRisks} | R Documentation |
Center for International Blood and Bone Marrow Transplant Research (CIBMTR) data
Description
We provide a dataset with five covariates from a study of acute graft-versus-host (GVHD) disease with 9651 patients who underwent first allogeneic hematopoietic cell transplant. We also provide an algorithm to simulate semi-competing risks outcome data.
Usage
data("CIBMTR")
Format
A data frame with 9651 observations on the following 5 variables.
sexP
patient sex:
M
-Male,F
-FemaleageP
patient age:
LessThan10
,10to19
,20to29
,30to39
,40to49
,50to59
,60plus
dType
disease type:
AML
-Acute Myeloid Leukemia,ALL
-Acute Lymphoblastic Leukemia,CML
-Chronic Myeloid Leukemia,MDS
-Myelodysplastic SyndromedStatus
disease stage:
Early
-early,Int
-intermediate,Adv
-advanceddonorGrp
human leukocyte antigen compatibility:
HLA_Id_Sib
-identical sibling,8_8
-8/8,7_8
-7/8
Details
See Examples below for an algorithm to simulate semi-competing risks outcome data.
Source
Center for International Blood and Bone Marrow Transplant Research
References
Lee, C., Lee, S.J., Haneuse, S. (2017+). Time-to-event analysis when the event is defined on a finite time interval. under review.
See Also
Examples
data(CIBMTR_Params)
data(CIBMTR)
## CREATING DUMMY VARIABLES ##
# Sex (M: reference)
CIBMTR$sexP <- as.numeric(CIBMTR$sexP)-1
# Age (LessThan10: reference)
CIBMTR$ageP20to29 <- as.numeric(CIBMTR$ageP=="20to29")
CIBMTR$ageP30to39 <- as.numeric(CIBMTR$ageP=="30to39")
CIBMTR$ageP40to49 <- as.numeric(CIBMTR$ageP=="40to49")
CIBMTR$ageP50to59 <- as.numeric(CIBMTR$ageP=="50to59")
CIBMTR$ageP60plus <- as.numeric(CIBMTR$ageP=="60plus")
# Disease type (AML: reference)
CIBMTR$dTypeALL <- as.numeric(CIBMTR$dType=="ALL")
CIBMTR$dTypeCML <- as.numeric(CIBMTR$dType=="CML")
CIBMTR$dTypeMDS <- as.numeric(CIBMTR$dType=="MDS")
# Disease status (Early: reference)
CIBMTR$dStatusInt <- as.numeric(CIBMTR$dStatus=="Int")
CIBMTR$dStatusAdv <- as.numeric(CIBMTR$dStatus=="Adv")
# HLA compatibility (HLA_Id_Sib: reference)
CIBMTR$donorGrp8_8 <- as.numeric(CIBMTR$donorGrp=="8_8")
CIBMTR$donorGrp7_8 <- as.numeric(CIBMTR$donorGrp=="7_8")
# Covariate matrix
x <- CIBMTR[,c("sexP","ageP20to29","ageP30to39","ageP40to49","ageP50to59","ageP60plus",
"dTypeALL","dTypeCML","dTypeMDS","dStatusInt","dStatusAdv","donorGrp8_8","donorGrp7_8")]
# Set the parameter values
beta1 <- CIBMTR_Params$beta1.true
beta2 <- CIBMTR_Params$beta2.true
beta3 <- CIBMTR_Params$beta3.true
alpha1 <- CIBMTR_Params$alpha1.true
alpha2 <- CIBMTR_Params$alpha2.true
alpha3 <- CIBMTR_Params$alpha3.true
kappa1 <- CIBMTR_Params$kappa1.true
kappa2 <- CIBMTR_Params$kappa2.true
kappa3 <- CIBMTR_Params$kappa3.true
theta <- CIBMTR_Params$theta.true
set.seed(1405)
simCIBMTR <- simID(id=NULL, x, x, x, beta1, beta2, beta3, alpha1, alpha2, alpha3,
kappa1, kappa2, kappa3, theta, SigmaV.true=NULL, cens=c(365,365))
names(simCIBMTR) <- c("time1", "event1", "time2", "event2")
CIBMTR <- cbind(simCIBMTR, CIBMTR)
head(CIBMTR)