CNV_correction {SegCorr} | R Documentation |
Corrects Gene Expression for CNV
Description
Correcting gene expression signal for CNV.
Usage
CNV_correction(s.Position.EXP, e.Position.EXP, Position.SNP, mu.SNP, EXP)
Arguments
s.Position.EXP |
vector with gene start position |
e.Position.EXP |
vector with gene end position |
Position.SNP |
vector with SNP/CGH positions |
mu.SNP |
Smoothed genomic signal matrix not containing NA values. Rows correspond to probes, while columns to patients. The ordering of the patients must be the same as in the EXP matrix. |
EXP |
Gene expression matrix must not contain NA's and genes with same expression value (i.e. null gene). Rows correspond to probes, while columns to patients. Again, ordering of patients must be the same between EXP and mu.SNP matrices. |
Details
Overlapping genes may correspond to the same SNP/CGH probes.
Value
CNV corrected signal matrix.
Author(s)
E. I. Delatola, E. Lebarbier, T. Mary-Huard, F. Radvanyi, S. Robin, J. Wong.
References
Delatola E. I., Lebarbier E., Mary-Huard T., Radvanyi F., Robin S., Wong J.(2017). SegCorr: a statistical procedure for the detection of genomic regions of correlated expression. BMC Bioinformatics, 18:333.
See Also
Examples
#data.sets = c('SNP','EXP_raw')
## Each gene corresponds to one SNP probe ##
#Position_EXP = matrix(1:1000,nrow=500,byrow=TRUE)
#Position_SNP = seq(2,1000,by=2)
#data(list=data.sets)
#mu.SNP = segmented_signal(SNP ,100) ## smoothed SNP signal
#EXP.CNV = CNV_correction(Position_EXP[,1], Position_EXP[,2], Position_SNP,
#mu.SNP, EXP_raw)## corrected signal