SmoothedDensitiesXY {ScatterDensity} | R Documentation |
Smoothed Densities X with Y
Description
Density is the smothed histogram density at [X,Y] of [Eilers/Goeman, 2004]
Usage
SmoothedDensitiesXY(X, Y, nbins, lambda, Xkernels, Ykernels, PlotIt = FALSE)
Arguments
X |
Numeric vector [1:n], first feature (for x axis values) |
Y |
Numeric vector [1:n], second feature (for y axis values), nbins= nxy => the nr of bins in x and y is nxy nbins = c(nx,ny) => the nr of bins in x is nx and for y is ny |
nbins |
number of bins, nbins =200 (default) |
lambda |
smoothing factor used by the density estimator or c() default: lambda = 20 which roughly means that the smoothing is over 20 bins around a given point. |
Xkernels |
bin kernels in x direction are given |
Ykernels |
bin kernels y direction are given |
PlotIt |
FALSE: no plotting, TRUE: simple plot |
Details
lambda has to chosen by the user and is a sensitive parameter.
Value
List of:
Densities |
numeric vector [1:n] is the smothed density in 3D |
Xkernels |
numeric vector [1:nx], nx defined by |
Ykernels |
numeric vector [1:ny], nx defined by |
hist_F_2D |
matrix [1:nx,1:ny] beeing the smoothed 2D histogram |
ind |
an index such that |
Author(s)
Michael Thrun
References
[Eilers/Goeman, 2004] Eilers, P. H., & Goeman, J. J.: Enhancing scatterplots with smoothed densities, Bioinformatics, Vol. 20(5), pp. 623-628.DOI: doi:10.1093/bioinformatics/btg454, 2004.
Examples
if(requireNamespace("DataVisualizations")){
data("ITS",package = "DataVisualizations")
data("MTY",package = "DataVisualizations")
Inds=which(ITS<900&MTY<8000)
V=SmoothedDensitiesXY(ITS[Inds],MTY[Inds])
}else{
#sample random data
ITS=rnorm(1000)
MTY=rnorm(1000)
V=SmoothedDensitiesXY(ITS,MTY)
}