stopes {STOPES} | R Documentation |
Selection of Threshold OPtimized Empirically via Splitting (STOPES)
Description
stopes
computes the STOPES estimator.
Usage
stopes(x, y, m = 20, prop_split = 0.50, prop_trim = 0.20, q_tail = 0.90)
Arguments
x |
n x p covariate matrix |
y |
n x 1 response vector |
m |
number of split samples, with default value = 20 |
prop_split |
proportion of data used for training samples, default value = 0.50 |
prop_trim |
proportion of trimming, default prop_trim = 0.20 |
q_tail |
proportion of truncation samples across the split samples, default values = 0.90 |
Value
stopes
returns a list with the STOPE estimates via data splitting using 0.25 method and the PELT method:
beta_stopes |
the STOPE estimate via data splitting |
J_stopes |
the set of active predictors corresponding to STOPES via data splitting |
final_cutpoints |
the final cutpoint for STOPES |
beta_pelt |
the STOPE estimate via PELT |
J_pelt |
the set of active predictors corresponding to STOPES via PELT |
final_cutpoints_PELT |
the final cutpoint for PELT |
quan_NA |
test if the vector of trimmed cutpoints has length 0, with 1 if TRUE and 0 otherwise |
Author(s)
Marinela Capanu, Mihai Giurcanu, Colin Begg, and Mithat Gonen
Examples
p <- 5
n <- 100
beta <- c(2, 1, 0.5, rep(0, p - 3))
x <- matrix(nrow = n, ncol = p, rnorm(n * p))
y <- rnorm(n) + crossprod(t(x), beta)
stopes(x, y)