SS.stst.tv {SSsimple} | R Documentation |
Steady State
Description
Find steady state of time-varying system, i.e., locate when Kalman gain converges
Usage
SS.stst.tv(F, H, Q, R, P0, epsilon, verbosity=0)
Arguments
F |
A list of d x d matrices. |
H |
A list of n x d matrices. |
Q |
A list of d x d matrices. |
R |
A list of n x n matrices. |
P0 |
Initial a priori prediction error. |
epsilon |
A small scalar number. |
verbosity |
0, 1 or 2. |
Details
Note: The test for convergence has been (very, very slightly) modified since v0.5.1. The current test has been implemented for rigor. Users who have results based on earlier releases may observe infinitesimal differences in the resulting prediction error.
Value
A named list.
P.apri |
A d x d matrix giving a priori prediction variance. |
P.apos |
A d x d matrix giving a posteriori prediction variance. |
Examples
F.tv <- list()
for(i in 1:10000) {
F.tv[[i]] <- diag( c(1/(i+10), 1/(i+10)) )
}
H <- matrix(1, 2, 2)
SS.stst.tv(F.tv, H, 1, 1, 10^5, 10^(-10), verbosity=2)
[Package SSsimple version 0.6.6 Index]