lcvqeSSLR {SSLR} | R Documentation |
General LCVQE Algorithm
Description
Model from conclust
This function takes an unlabeled dataset and two lists of must-link and cannot-link constraints
as input and produce a clustering as output.
Usage
lcvqeSSLR(n_clusters = NULL, mustLink = NULL, cantLink = NULL, max_iter = 2)
Arguments
n_clusters |
A number of clusters to be considered. Default is NULL (num classes) |
mustLink |
A list of must-link constraints. NULL Default, constrints same label |
cantLink |
A list of cannot-link constraints. NULL Default, constrints with different label |
max_iter |
maximum iterations in KMeans. Default is 2 |
Note
This models only returns labels, not centers
References
Dan Pelleg, Dorit Baras
K-means with large and noisy constraint sets
2007
Examples
library(tidyverse)
library(caret)
library(SSLR)
library(tidymodels)
data <- iris
set.seed(1)
#% LABELED
cls <- which(colnames(iris) == "Species")
labeled.index <- createDataPartition(data$Species, p = .2, list = FALSE)
data[-labeled.index,cls] <- NA
m <- lcvqeSSLR(max_iter = 1) %>% fit(Species ~ ., data)
#Get labels (assing clusters), type = "raw" return factor
labels <- m %>% cluster_labels()
print(labels)
[Package SSLR version 0.9.3.3 Index]