smoothed_penalized_EV {SPEV} | R Documentation |
smoothed_penalized_EV
Description
This function takes a matrix (m), a lambda value (lambda), the number of desired eigenvectors (k), and a mu value (mu) as input. It then computes eigenvectors 1 to k, penalized by the supplied lambda and smoothed by the Nesterov smoothing function.
Usage
smoothed_penalized_EV(m, lambda, k, mu)
Arguments
m |
A matrix generated from a large dataset. |
lambda |
A numeric vector of lambda values to use for the penalty. |
k |
The number of eigenvectors we consider in the analysis. |
mu |
A number assigned to mu; we are typically using 0.1. |
Value
Returns smoothed eigenvectors 1 to k for the specified lambda value.
Examples
# Generate a small matrix for testing
m <- matrix(rnorm(100), nrow = 10)
# Call function (using matrix, lambda, mu, and k)
smoothed_penalized_EV(
m = m,
lambda = 1,
k = 2,
mu = 0.1
)
[Package SPEV version 1.0.0 Index]