irt.link {SNSequate} | R Documentation |
IRT parameter linking methods
Description
The function implements parameter linking methods to transform IRT scales. Mean-mean, mean-sigma, Haebara, and Stocking and Lord methods are available (see details).
Usage
irt.link(parm, common, model, icc, D)
Arguments
parm |
A 6 column matrix containing item parameter estimates from an IRT model. The
first three columns contains the parameters for the form |
common |
A vector indicating the position where common items are located |
model |
A character string indicating the underlying IRT model: "1PL", "2PL", "3PL". |
icc |
A character string indicating the type of |
D |
A number indicating the value of the constant |
Details
The function implments various methods of IRT parameter linking (a.k.a, scale transformation
methods). It calculates the linking constants A
and B
to tranform parameter estimates.
When assuming a 1PL model, the matrix parm
should contain a column of ones and a column of zeroes
in the places where discrimination and guessing parameters are located, respectively.
The characteristic curve methods (Haebara and Stocking and Lord) rely on the item characteristic curve
assumed for the probability of a correct answer
Besides the traditional logistic model, the irt.link()
function allows the use of an asymetric
cloglog ICC. See the help for KB36.1PL
data set, where some details on how to fit a 1PL model with
cloglog link in lmer
are given.
For more details on characteristic curve methods see Kolen and Brennan (2004).
Value
A list with the constants A
and B
calculated using the four different methods
Note
Currently, the cloglog ICC is only implmented for the 1PL model. A 1PL model with asymetric cloglog
link can be fitted in R using the lmer()
function in package lme4
Author(s)
Jorge Gonzalez jorge.gonzalez@mat.uc.cl
References
Gonzalez, J. (2014). SNSequate: Standard and Nonstandard Statistical Models and Methods for Test Equating. Journal of Statistical Software, 59(7), 1-30.
Kolen, M., and Brennan, R. (2004). Test Equating, Scaling and Linking. New York, NY: Springer-Verlag.
Estay, G. (2012). Characteristic Curves Scale Transformation Methods Using Asymmetric ICCs for IRT Equating. Unpublished MSc. Thesis. Pontificia Universidad Catolica de Chile
See Also
Examples
#### Example. KB, Table 6.6
data(KB36)
parm.x = KB36$KBformX_par
parm.y = KB36$KBformY_par
comitems = seq(3,36,3)
parm = as.data.frame(cbind(parm.y, parm.x))
# Table 6.6 KB
irt.link(parm,comitems,model="3PL",icc="logistic",D=1.7)
# Same data but assuming a 1PL model. The parameter estimates are load from
# the KB36.1PL data set. See the help for KB36.1PL data for details on how these
# estimates were obtained using \code{lmer()} (see also Table 6.13 in KB)
data(KB36.1PL)
#preparing the input data matrices for irt.link() function
b.log.y<-KB36.1PL$b.logistic[,2]
b.log.x<-KB36.1PL$b.logistic[,1]
b.clog.y<-KB36.1PL$b.cloglog[,2]
b.clog.x<-KB36.1PL$b.cloglog[,1]
parm2 = as.data.frame(cbind(1,b.log.y,0, 1,b.log.x, 0))
parm3 = as.data.frame(cbind(1,b.clog.y,0, 1,b.clog.x,0))
#vector indicating common items
comitems = seq(3,36,3)
#Calculating the B constant under the logistic-link model
irt.link(parm2,comitems,model="1PL",icc="logistic",D=1.7)
#Calculating the B constant under the cloglog-link model
irt.link(parm3,comitems,model="1PL",icc="cloglog",D=1.7)