BB.smooth {SNSequate} | R Documentation |
Pre-smoothing using beta4 models.
Description
This function fits beta models to score data and provides estimates of the (vector of) score probabilities.
Usage
BB.smooth(x,nparm=4,rel)
Arguments
x |
Data. |
nparm |
parameters. |
rel |
reliability. |
Details
This function fits beta models as described in XXXX, and XXXXX.
Particular cases of this general equation for each of the equating designs can be found in Von Davier et al (2004) (e.g., Equations (7.1) and (7.2) for the "EG" design, Equation (8.1) for the "SG" design, Equations (9,1) and (9.2) for the "CB" design).
Value
prob.est |
The estimated score probabilities |
freq.est |
The estimated score frequencies |
parameters |
The parameters estimates |
Author(s)
Jorge Gonzalez jorge.gonzalez@mat.uc.cl
References
Gonzalez, J. (2014). SNSequate: Standard and Nonstandard Statistical Models and Methods for Test Equating. Journal of Statistical Software, 59(7), 1-30.
Holland, P. and Thayer, D. (1987). Notes on the use of loglinear models for fitting discrete probability distributions. Research Report 87-31, Princeton NJ: Educational Testing Service.
Von Davier, A., Holland, P., and Thayer, D. (2004). The Kernel Method of Test Equating. New York, NY: Springer-Verlag.
[1] Moses, T. "Paper SA06_05 Using PROC GENMOD for Loglinear Smoothing Tim Moses and Alina A. von Davier, Educational Testing Service, Princeton, NJ".
See Also
Examples
data("SEPA", package = "SNSequate")
# create score frequency distributions using freqtab from package equate
library(equate)
SEPAx<-freqtab(x=SEPA$xscores,scales=0:50)
SEPAy<-freqtab(x=SEPA$yscores,scales=0:50)
beta4nx<-BB.smooth(SEPAx,nparm=4,rel=0)
beta4ny<-BB.smooth(SEPAy,nparm=4,rel=0)
plot(0:50,as.matrix(SEPAx)/sum(as.matrix(SEPAx)),type="b",pch=0,
ylim=c(0,0.06),ylab="Relative Frequency",xlab="Scores")