pbc {SMPracticals} | R Documentation |
Mayo Clinic Primary Biliary Cirrhosis Data
Description
Followup of 312 randomised and 108 unrandomised patients with primary biliary cirrhosis, a rare autoimmune liver disease, at Mayo Clinic.
Usage
data(pbc)
Format
A data frame with 418 observations on the following 20 variables.
- age
in years
- alb
serum albumin
- alkphos
alkaline phosphotase
- ascites
presence of ascites
- bili
serum bilirubin
- chol
serum cholesterol
- edema
presence of edema
- edtrt
0 no edema, 0.5 untreated or successfully treated 1 unsuccessfully treated edema
- hepmeg
enlarged liver
- time
survival time
- platelet
platelet count
- protime
standardised blood clotting time
- sex
1=male
- sgot
liver enzyme (now called AST)
- spiders
blood vessel malformations in the skin
- stage
histologic stage of disease (needs biopsy)
- status
censoring status
- trt
1/2/-9 for control, treatment, not randomised
- trig
triglycerides
- copper
urine copper
Source
Fleming, T. R. and Harrington, D. P. (1991) Counting Processes and Survival Analysis. Wiley: New York.
References
Davison, A. C. (2003) Statistical Models. Cambridge University Press. Page 549.
Examples
data(pbc)
# to make version of dataset used in book
pbcm <- pbc[(pbc$trt!=-9),]
pbcm$copper[(pbcm$copper==-9)] <- median(pbcm$copper[(pbcm$copper!=-9)])
pbcm$platelet[(pbcm$platelet==-9)] <- median(pbcm$platelet[(pbcm$platelet!=-9)])
attach(pbcm)
library(survival)
par(mfrow=c(1,2),pty="s")
plot(survfit(Surv(time,status)~trt),ylim=c(0,1),lty=c(1,2),
ylab="Survival probability",xlab="Time (days)")
plot(survfit(coxph(Surv(time,status)~trt+strata(sex))),ylim=c(0,1),lty=c(1,2),
ylab="Survival probability",xlab="Time (days)")
lines(survfit(coxph(Surv(time,status)~trt)),lwd=2)
# proportional hazards model fit
fit <- coxph(formula = Surv(time, status) ~ age + alb + alkphos + ascites +
bili + edtrt + hepmeg + platelet + protime + sex + spiders, data=pbcm)
summary(fit)
step.fit <- step(fit,direction="backward")