predict.SMMA {SMMA} | R Documentation |
Make Prediction From a SMMA Object
Description
Given new covariate data this function computes the linear predictors
based on the estimated model coefficients in an object produced by the function softmaximin
. Note that the
data can be supplied in two different formats: i) as a n' \times p
matrix (p
is the number of model
coefficients and n'
is the number of new data points) or ii) as a list of two or three matrices each of
size n_i' \times p_i, i = 1, 2, 3
(n_i'
is the number of new marginal data points in the i
th dimension).
Usage
## S3 method for class 'SMMA'
predict(object, x = NULL, X = NULL, ...)
Arguments
object |
An object of class SMMA, produced with |
x |
a matrix of size |
X |
a list containing the data matrices each of size |
... |
ignored |
Value
A list of length nlambda
containing the linear predictors for each model. If
new covariate data is supplied in one n' \times p
matrix x
each
item is a vector of length n'
. If the data is supplied as a list of
matrices each of size n'_{i} \times p_i
, each item is an array of size n'_1 \times \cdots \times n'_d
, with d\in \{1,2,3\}
.
Author(s)
Adam Lund
Examples
##size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4
##marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1, 0, 0.5), n1, p1)
X2 <- matrix(rnorm(n2 * p2, 0, 0.5), n2, p2)
X3 <- matrix(rnorm(n3 * p3, 0, 0.5), n3, p3)
X <- list(X1, X2, X3)
component <- rbinom(p1 * p2 * p3, 1, 0.1)
Beta1 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1 , p2, p3))
Beta2 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1 , p2, p3))
mu1 <- RH(X3, RH(X2, RH(X1, Beta1)))
mu2 <- RH(X3, RH(X2, RH(X1, Beta2)))
Y1 <- array(rnorm(n1 * n2 * n3, mu1), dim = c(n1, n2, n3))
Y2 <- array(rnorm(n1 * n2 * n3, mu2), dim = c(n1, n2, n3))
Y <- array(NA, c(dim(Y1), 2))
Y[,,, 1] <- Y1; Y[,,, 2] <- Y2;
fit <- softmaximin(X, Y, zeta = 10, penalty = "lasso", alg = "npg")
##new data in matrix form
x <- matrix(rnorm(p1 * p2 * p3), nrow = 1)
predict(fit, x = x)[[15]]
##new data in tensor component form
X1 <- matrix(rnorm(p1), nrow = 1)
X2 <- matrix(rnorm(p2), nrow = 1)
X3 <- matrix(rnorm(p3), nrow = 1)
predict(fit, X = list(X1, X2, X3))[[15]]