RH {SMMA} | R Documentation |
The Rotated H-transform of a 3d Array by a Matrix
Description
This function is an implementation of the \rho
-operator found in
Currie et al 2006. It forms the basis of the GLAM arithmetic.
Usage
RH(M, A)
Arguments
M |
a |
A |
a 3d array of size |
Details
For details see Currie et al 2006. Note that this particular implementation is not used in the routines underlying the optimization procedure.
Value
A 3d array of size p_2 \times p_3 \times n
.
Author(s)
Adam Lund
References
Currie, I. D., M. Durban, and P. H. C. Eilers (2006). Generalized linear array models with applications to multidimensional smoothing. Journal of the Royal Statistical Society. Series B. 68, 259-280. url = http://dx.doi.org/10.1111/j.1467-9868.2006.00543.x.
Examples
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4
##marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
Beta <- array(rnorm(p1 * p2 * p3, 0, 1), c(p1 , p2, p3))
max(abs(c(RH(X3, RH(X2, RH(X1, Beta)))) - kronecker(X3, kronecker(X2, X1)) %*% c(Beta)))
[Package SMMA version 1.0.3 Index]