LoglikelihoodMk {SMM} | R Documentation |
Loglikelihood (Markov model)
Description
Computation of the loglikelihood starting from sequence(s), alphabet, initial distribution, transition matrix
Usage
LoglikelihoodMk(seq, E, mu, Ptrans, k)
Arguments
seq |
List of sequence(s) |
E |
Vector of state space |
mu |
Vector of initial distribution |
Ptrans |
Matrix of transition probabilities |
k |
Order of the Markov chain |
Value
L |
Value of loglikelihood for each sequence |
Author(s)
Vlad Stefan Barbu, barbu@univ-rouen.fr
Caroline Berard, caroline.berard@univ-rouen.fr
Dominique Cellier, dominique.cellier@laposte.net
Mathilde Sautreuil, mathilde.sautreuil@etu.univ-rouen.fr
Nicolas Vergne, nicolas.vergne@univ-rouen.fr
See Also
simulSM, estimMk, simulMk, estimSM, LoglikelihoodSM
Examples
alphabet = c("a","c","g","t")
S = length(alphabet)
# creation of the transition matrix
Pij = matrix(c(0,0.2,0.3,0.5,0.4,0,0.2,0.4,0.1,0.2,0,0.7,0.8,0.1,0.1,0),
nrow = S, ncol = S, byrow = TRUE)
#Pij
# [,1] [,2] [,3] [,4]
#[1,] 0.0 0.2 0.3 0.5
#[2,] 0.4 0.0 0.2 0.4
#[3,] 0.1 0.2 0.0 0.7
#[4,] 0.8 0.1 0.1 0.0
## Simulation of two sequences of length 20 and 50 respectively
seq2 = simulMk(E = alphabet, nbSeq = 2, lengthSeq = c(20,50), Ptrans = Pij,
init = rep(1/4,4), k = 1)
####################################
## Computation of the loglikelihood
####################################
LoglikelihoodMk(seq = seq2, E = alphabet, mu = rep(1/4,4), Ptrans = Pij, k = 1)
#$L
#$L[[1]]
#[1] -13.90161
#
#$L[[2]]
#[1] -39.58438
[Package SMM version 1.0.2 Index]