SimModel1 {SMFilter} | R Documentation |
Simulate from the type one state-space Model on Stiefel manifold.
Description
This function simulates from the type one model on Stiefel manifold. See Details part below.
Usage
SimModel1(iT, mX = NULL, mZ = NULL, mY = NULL, alpha_0, beta,
mB = NULL, Omega = NULL, vD, burnin = 100)
Arguments
iT |
the sample size. |
mX |
the matrix containing X_t with dimension |
mZ |
the matrix containing Z_t with dimension |
mY |
initial values of the dependent variable for |
alpha_0 |
the initial alpha, |
beta |
the |
mB |
the coefficient matrix |
Omega |
covariance matrix of the errors. |
vD |
vector of the diagonals of |
burnin |
burn-in sample size (matrix Langevin). |
Details
The type one model on Stiefel manifold takes the form:
\boldsymbol{y}_t \quad = \quad \boldsymbol{\alpha}_t \boldsymbol{\beta} ' \boldsymbol{x}_t + \boldsymbol{B} \boldsymbol{z}_t + \boldsymbol{\varepsilon}_t
\boldsymbol{\alpha}_{t+1} | \boldsymbol{\alpha}_{t} \quad \sim \quad ML (p, r, \boldsymbol{\alpha}_{t} \boldsymbol{D})
where \boldsymbol{y}_t
is a p
-vector of the dependent variable,
\boldsymbol{x}_t
and \boldsymbol{z}_t
are explanatory variables wit dimension q_1
and q_2
,
\boldsymbol{x}_t
and \boldsymbol{z}_t
have no overlap,
matrix \boldsymbol{B}
is the coefficients for \boldsymbol{z}_t
,
\boldsymbol{\varepsilon}_t
is the error vector.
The matrices \boldsymbol{\alpha}_t
and \boldsymbol{\beta}
have dimensions p \times r
and q_1 \times r
, respectively.
Note that r
is strictly smaller than both p
and q_1
.
\boldsymbol{\alpha}_t
and \boldsymbol{\beta}
are both non-singular matrices.
\boldsymbol{\alpha}_t
is time-varying while \boldsymbol{\beta}
is time-invariant.
Furthermore, \boldsymbol{\alpha}_t
fulfills the condition \boldsymbol{\alpha}_t' \boldsymbol{\alpha}_t = \boldsymbol{I}_r
,
and therefor it evolves on the Stiefel manifold.
ML (p, r, \boldsymbol{\alpha}_{t} \boldsymbol{D})
denotes the Matrix Langevin distribution or matrix von Mises-Fisher distribution on the Stiefel manifold.
Its density function takes the form
f(\boldsymbol{\alpha_{t+1}} ) = \frac{ \mathrm{etr} \left\{ \boldsymbol{D} \boldsymbol{\alpha}_{t}' \boldsymbol{\alpha_{t+1}} \right\} }{ _{0}F_1 (\frac{p}{2}; \frac{1}{4}\boldsymbol{D}^2 ) }
where \mathrm{etr}
denotes \mathrm{exp}(\mathrm{tr}())
,
and _{0}F_1 (\frac{p}{2}; \frac{1}{4}\boldsymbol{D}^2 )
is the (0,1)-type hypergeometric function for matrix.
Note that the function does not add intercept automatically.
Value
A list containing the sampled data and the dynamics of alpha.
The object is a list containing the following components:
dData |
a data.frame of the sampled data |
aAlpha |
an array of the |
Author(s)
Yukai Yang, yukai.yang@statistik.uu.se
Examples
iT = 50 # sample size
ip = 2 # dimension of the dependent variable
ir = 1 # rank number
iqx=2 # number of variables in X
iqz=2 # number of variables in Z
ik = 1 # lag length
if(iqx==0) mX=NULL else mX = matrix(rnorm(iT*iqx),iT, iqx)
if(iqz==0) mZ=NULL else mZ = matrix(rnorm(iT*iqz),iT, iqz)
if(ik==0) mY=NULL else mY = matrix(0, ik, ip)
alpha_0 = matrix(c(runif_sm(num=1,ip=ip,ir=ir)), ip, ir)
beta = matrix(c(runif_sm(num=1,ip=ip*ik+iqx,ir=ir)), ip*ik+iqx, ir)
if(ip*ik+iqz==0) mB=NULL else mB = matrix(c(runif_sm(num=1,ip=(ip*ik+iqz)*ip,ir=1)), ip, ip*ik+iqz)
vD = 50
ret = SimModel1(iT=iT, mX=mX, mZ=mZ, mY=mY, alpha_0=alpha_0, beta=beta, mB=mB, vD=vD)