SMFilter {SMFilter}R Documentation

SMFilter: a package implementing the filtering algorithms for the state-space models on the Stiefel manifold.

Description

The package implements the filtering algorithms for the state-space models on the Stiefel manifold. It also implements sampling algorithms for uniform, vector Langevin-Bingham and matrix Langevin-Bingham distributions on the Stiefel manifold.

Details

Two types of the state-space models on the Stiefel manifold are considered.

The type one model on Stiefel manifold takes the form:

yt=αtβxt+Bzt+εt\boldsymbol{y}_t \quad = \quad \boldsymbol{\alpha}_t \boldsymbol{\beta} ' \boldsymbol{x}_t + \boldsymbol{B} \boldsymbol{z}_t + \boldsymbol{\varepsilon}_t

αt+1αtML(p,r,αtD)\boldsymbol{\alpha}_{t+1} | \boldsymbol{\alpha}_{t} \quad \sim \quad ML (p, r, \boldsymbol{\alpha}_{t} \boldsymbol{D})

where yt\boldsymbol{y}_t is a pp-vector of the dependent variable, xt\boldsymbol{x}_t and zt\boldsymbol{z}_t are explanatory variables wit dimension q1q_1 and q2q_2, xt\boldsymbol{x}_t and zt\boldsymbol{z}_t have no overlap, matrix B\boldsymbol{B} is the coefficients for zt\boldsymbol{z}_t, εt\boldsymbol{\varepsilon}_t is the error vector.

The matrices αt\boldsymbol{\alpha}_t and β\boldsymbol{\beta} have dimensions p×rp \times r and q1×rq_1 \times r, respectively. Note that rr is strictly smaller than both pp and q1q_1. αt\boldsymbol{\alpha}_t and β\boldsymbol{\beta} are both non-singular matrices. αt\boldsymbol{\alpha}_t is time-varying while β\boldsymbol{\beta} is time-invariant.

Furthermore, αt\boldsymbol{\alpha}_t fulfills the condition αtαt=Ir\boldsymbol{\alpha}_t' \boldsymbol{\alpha}_t = \boldsymbol{I}_r, and therefor it evolves on the Stiefel manifold.

ML(p,r,αtD)ML (p, r, \boldsymbol{\alpha}_{t} \boldsymbol{D}) denotes the Matrix Langevin distribution or matrix von Mises-Fisher distribution on the Stiefel manifold. Its density function takes the form

f(αt+1)=etr{Dαtαt+1}0F1(p2;14D2)f(\boldsymbol{\alpha_{t+1}} ) = \frac{ \mathrm{etr} \left\{ \boldsymbol{D} \boldsymbol{\alpha}_{t}' \boldsymbol{\alpha_{t+1}} \right\} }{ _{0}F_1 (\frac{p}{2}; \frac{1}{4}\boldsymbol{D}^2 ) }

where etr\mathrm{etr} denotes exp(tr())\mathrm{exp}(\mathrm{tr}()), and 0F1(p2;14D2)_{0}F_1 (\frac{p}{2}; \frac{1}{4}\boldsymbol{D}^2 ) is the (0,1)-type hypergeometric function for matrix.

The type two model on Stiefel manifold takes the form:

yt=αβtxt+Bzt+εt\boldsymbol{y}_t \quad = \quad \boldsymbol{\alpha} \boldsymbol{\beta}_t ' \boldsymbol{x}_t + \boldsymbol{B}' \boldsymbol{z}_t + \boldsymbol{\varepsilon}_t

βt+1βtML(q1,r,βtD)\boldsymbol{\beta}_{t+1} | \boldsymbol{\beta}_{t} \quad \sim \quad ML (q_1, r, \boldsymbol{\beta}_{t} \boldsymbol{D})

where yt\boldsymbol{y}_t is a pp-vector of the dependent variable, xt\boldsymbol{x}_t and zt\boldsymbol{z}_t are explanatory variables wit dimension q1q_1 and q2q_2, xt\boldsymbol{x}_t and zt\boldsymbol{z}_t have no overlap, matrix B\boldsymbol{B} is the coefficients for zt\boldsymbol{z}_t, εt\boldsymbol{\varepsilon}_t is the error vector.

The matrices α\boldsymbol{\alpha} and βt\boldsymbol{\beta}_t have dimensions p×rp \times r and q1×rq_1 \times r, respectively. Note that rr is strictly smaller than both pp and q1q_1. α\boldsymbol{\alpha} and βt\boldsymbol{\beta}_t are both non-singular matrices. βt\boldsymbol{\beta}_t is time-varying while α\boldsymbol{\alpha} is time-invariant.

Furthermore, βt\boldsymbol{\beta}_t fulfills the condition βtβt=Ir\boldsymbol{\beta}_t' \boldsymbol{\beta}_t = \boldsymbol{I}_r, and therefor it evolves on the Stiefel manifold.

ML(p,r,βtD)ML (p, r, \boldsymbol{\beta}_t \boldsymbol{D}) denotes the Matrix Langevin distribution or matrix von Mises-Fisher distribution on the Stiefel manifold. Its density function takes the form

f(βt+1)=etr{Dβtβt+1}0F1(p2;14D2)f(\boldsymbol{\beta_{t+1}} ) = \frac{ \mathrm{etr} \left\{ \boldsymbol{D} \boldsymbol{\beta}_{t}' \boldsymbol{\beta_{t+1}} \right\} }{ _{0}F_1 (\frac{p}{2}; \frac{1}{4}\boldsymbol{D}^2 ) }

where etr\mathrm{etr} denotes exp(tr())\mathrm{exp}(\mathrm{tr}()), and 0F1(p2;14D2)_{0}F_1 (\frac{p}{2}; \frac{1}{4}\boldsymbol{D}^2 ) is the (0,1)-type hypergeometric function for matrix.

Author and Maintainer

Yukai Yang

Department of Statistics, Uppsala University

yukai.yang@statistik.uu.se

References

Yang, Yukai and Bauwens, Luc. (2018) "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering", Econometrics, 6(4), 48.

Simulation

SimModel1 simulate from the type one state-space model on the Stiefel manifold.

SimModel2 simulate from the type two state-space model on the Stiefel manifold.

Filtering

FilterModel1 filtering algorithm for the type one model.

FilterModel2 filtering algorithm for the type two model.

Sampling

runif_sm sample from the uniform distribution on the Stiefel manifold.

rvlb_sm sample from the vector Langevin-Bingham distribution on the Stiefel manifold.

rmLB_sm sample from the matrix Langevin-Bingham distribution on the Stiefel manifold.

Other Functions

version shows the version number and some information of the package.


[Package SMFilter version 1.0.3 Index]