MC_var_yibar_mis {SMARTp} | R Documentation |
Estimated mean and variance of the average change in CAL for each subject
Description
The estimated Monte Carlo mean and variance of the average change in clinical attachment level (CAL) for each subject
Usage
MC_var_yibar_mis(mu, Sigma, sigma1, lambda, nu, sigma0, Num, a0, b0, cutoff)
Arguments
mu |
Mean matrix, where row represents each treatment path, and column represents each cluster unit |
Sigma |
Within-mouth teeth covariance matrix |
sigma1 |
Standard deviation of the residual for the continuous outcome |
lambda |
The skewness parameter of the residual for the continuous outcome |
nu |
The degree freedom, or kurtosis parameter of the residual for the continuous outcome |
sigma0 |
Standard deviation of the residual for the binary outcome |
Num |
Number of samples to estimate mean or variance of |
a0 |
Intercept parameter in the probit model for the binary outcome |
b0 |
Slope parameter corresponding to the spatial random effect in the probit model for the binary outcome |
cutoff |
Cut-off value in the binary outcome regression |
Details
MC_var_yibar_mis computes the Monte-Carlo estimates of expectation and variance of the sample mean among the teeth within each mouth, i.e
\bar{Y}_i = \sum Y_{it}(1 - M_{it})/\sum(1 - M_{it})
, where Y_{it}
is the change in CAL (measured in mm) for patient i
and tooth t
, and M_{it}
is the misingness indicator, i.e., M_{it} = 1
implies tooth t
in subject i
is mising. The joint regression models for Y_{it}
and M_{it}
are available in Reich & Bandyopadhyay (2010, Annals of Applied Statistics).
Value
The simulated dataset of CAL change "Y_{it}
", missingness "M_{it}
" and function inside the indicator of "M_{it} I_{it}
" for
each tooth of each patient, with the corresponding estimated mean "mY_i
", variance "VarY_i
" and missing proportion "PM" for each patient
Author(s)
Jing Xu, Dipankar Bandyopadhyay, Douglas Azevedo, Bibhas Chakraborty
References
Besag, J., York, J. & Mollie, A. (1991), "Bayesian image restoration, with two applications in spatial statistics (With Discussion)", Annals of the Institute of Statistical Mathematics 43, 159.
Reich, B. & Bandyopadhyay, D. (2010), "A latent factor model for spatial data with informative missingness", The Annals of Applied Statistics 4, 439–459.
See Also
CAR_cov_teeth, SampleSize_SMARTp
Examples
m <- 28
Num <- 1000
cutoff <- 0
sigma1 <- 0.95
sigma0 <- 1
lambda <- 0
nu <- Inf
b0 <- 0.5
a0 <- -1.0
rho <- 0.975
tau <- 0.85
del1 <- 0.5
del2 <- 2
Sigma <- CAR_cov_teeth(m, rho, tau)
Sigma_comp <- array(Sigma, c(m, m, 4))
Sigma_sim <- array(Sigma, c(m, m, 10))
mu_comp <- array(0, c(2, m, 2))
mu_comp[, , 1] <- rbind(rep(0, m), rep(del1, m))
mu_comp[, , 2] <- rbind(rep(0, m), rep(del2, m))
VarYitd1R = MC_var_yibar_mis(mu = mu_comp[1, , 1], Sigma = Sigma,
sigma1 = sigma1,
lambda = lambda, nu = nu,
sigma0 = sigma0, Num = Num, a0 = a0, b0 = b0,
cutoff = cutoff)
PM <- VarYitd1R$PM
VarYid1R <- VarYitd1R$VarYi
mYid1R <- VarYitd1R$mYi
VarYitd1NR <- MC_var_yibar_mis(mu = mu_comp[2, , 1], Sigma = Sigma,
sigma1 = sigma1,
lambda = lambda, nu = nu,
sigma0 = sigma0, Num = Num, a0 = a0, b0 = b0, cutoff = cutoff)
PM <- VarYitd1NR$PM
VarYid1NR <- VarYitd1NR$VarYi
mYid1NR <- VarYitd1NR$mYi
VarYitd3R <- MC_var_yibar_mis(mu = mu_comp[1, , 2], Sigma = Sigma,
sigma1 = sigma1,
lambda = lambda, nu = nu,
sigma0 = sigma0, Num = Num, a0 = a0, b0 = b0,
cutoff = cutoff)
PM <- VarYitd3R$PM
VarYid3R <- VarYitd3R$VarYi
mYid3R <- VarYitd3R$mYi
VarYitd3NR <- MC_var_yibar_mis(mu = mu_comp[2,,2], Sigma = Sigma,
sigma1 = sigma1,
lambda = lambda, nu = nu,
sigma0 = sigma0, Num = Num, a0 = a0, b0 = b0, cutoff = cutoff)
PM <- VarYitd3NR$PM
VarYid3NR <- VarYitd3NR$VarYi
mYid3NR <- VarYitd3NR$mYi