Estimate_GP_params {SKFCPD} | R Documentation |
Estimate parameters from fast computation of GaSP model
Description
Getting the estimated parameters from fast computation of the Gaussian stochastic process (GaSP) model with the Matern kernel function with a noise.
Usage
Estimate_GP_params(input, output, kernel_type='matern_5_2')
Arguments
input |
a vector with dimension num_obs x 1 for the sorted input locations. |
output |
a vector with dimension n x 1 for the observations at the sorted input locations. |
kernel_type |
a |
Value
Estimate_GP_params
returns an S4 object of class Estimated_GP_params
with estimated parameters including
beta |
the inverse range parameter, i.e. beta=1/gamma |
eta |
the noise-to-signal ratio |
sigma_2 |
the variance parameter |
Author(s)
Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]
Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>
References
Hartikainen, Jouni, and Simo Sarkka. Kalman filtering and smoothing solutions to temporal Gaussian process regression models. In 2010 IEEE international workshop on machine learning for signal processing, pp. 379-384. IEEE, 2010.
Gu, Mengyang, and Yanxun Xu. Fast nonseparable Gaussian stochastic process with application to methylation level interpolation. Journal of Computational and Graphical Statistics 29, no. 2 (2020): 250-260.
Gu, Mengyang, and Weining Shen. Generalized probabilistic principal component analysis of correlated data. The Journal of Machine Learning Research 21, no. 1 (2020): 428-468.
Gu, Mengyang, Xiaojing Wang, and James O. Berger. Robust Gaussian stochastic process emulation. The Annals of Statistics 46, no. 6A (2018): 3038-3066.
Examples
library(SKFCPD)
#------------------------------------------------------------------------------
# simple example with noise
#------------------------------------------------------------------------------
y_R<-function(x){
cos(2*pi*x)
}
###let's test for 100 observations
set.seed(1)
num_obs=100
input=runif(num_obs)
output=y_R(input)+rnorm(num_obs,mean=0,sd=1)
## run Estimate_GP_params to get estimated parameters
params_est = Estimate_GP_params(input, output)
print(params_est@beta) ## inverse of range parameter
print(params_est@eta) ## noise-to-signal ratio
print(params_est@sigma_2) ## variance