tune.ridgeSIR {SISIR} | R Documentation |
Cross-Validation for ridge SIR
Description
tune.ridgeSIR
performs a Cross Validation for ridge SIR estimation
Usage
tune.ridgeSIR(
x,
y,
listH,
list_mu2,
list_d,
nfolds = 10,
parallel = TRUE,
ncores = NULL
)
Arguments
x |
explanatory variables (numeric matrix or data frame) |
y |
target variable (numeric vector) |
listH |
list of the number of slices to be tested (numeric vector) |
list_mu2 |
list of ridge regularization parameters to be tested (numeric vector) |
list_d |
list of the dimensions to be tested (numeric vector) |
nfolds |
number of folds for the cross validation. Default is 10 |
parallel |
whether the computation should be performed in parallel or not. Logical. Default is FALSE |
ncores |
number of cores to use if |
Value
a data frame with tested parameters and corresponding CV error and estimation of R(d)
Author(s)
Victor Picheny, victor.picheny@inrae.fr
Remi Servien, remi.servien@inrae.fr
Nathalie Vialaneix, nathalie.vialaneix@inrae.fr
References
Picheny, V., Servien, R. and Villa-Vialaneix, N. (2016) Interpretable sparse SIR for digitized functional data. Statistics and Computing, 29(2), 255–267.
See Also
Examples
set.seed(1115)
tsteps <- seq(0, 1, length = 200)
nsim <- 100
simulate_bm <- function() return(c(0, cumsum(rnorm(length(tsteps)-1, sd=1))))
x <- t(replicate(nsim, simulate_bm()))
beta <- cbind(sin(tsteps*3*pi/2), sin(tsteps*5*pi/2))
y <- log(abs(x %*% beta[ ,1])) + sqrt(abs(x %*% beta[ ,2]))
y <- y + rnorm(nsim, sd = 0.1)
list_mu2 <- 10^(0:10)
listH <- c(5, 10)
list_d <- 1:4
set.seed(1129)
## Not run:
res_tune <- tune.ridgeSIR(x, y, listH, list_mu2, list_d,
nfolds = 10, parallel = TRUE)
## End(Not run)